A consequence of an effective form of the abc-conjecture
T. Cochrane and R. E. Dressler [CD] proved that the abc-conjecture implies that, for every > 0, the gap between two consecutive numbers A with two exceptions given in Table 2.
T. Cochrane and R. E. Dressler [CD] proved that the abc-conjecture implies that, for every > 0, the gap between two consecutive numbers A with two exceptions given in Table 2.
Nous étudions le comportement asymptotique du nombre de variétés dans une certaine classe ne satisfaisant pas le principe de Hasse. Cette étude repose sur des résultats récemment obtenus par Colliot-Thélène [3].
We shall discuss some known problems concerning the arithmetic of linear recurrent sequences. After recalling briefly some longstanding questions and solutions concerning zeros, we shall focus on recent progress on the so-called “quotient problem” (resp. "-th root problem"), which in short asks whether the integrality of the values of the quotient (resp. -th root) of two (resp. one) linear recurrences implies that this quotient (resp. -th root) is itself a recurrence. We shall also relate such...
On montre comment écrire de grandes familles, avec de hautes multiplicités, de cas d’égalité pour l’inégalité de Stothers-Mason (si sont des polynômes premiers entre eux, le nombre exact de racines du produit dépasse de le plus grand des degrés des composantes . On développera pour cela des techniques polynomiales itératives inspirées des décompositions de Dunford-Schwartz et de fonctions de Belyi. Des exemples d’application avec les conjectures ou de M. Hall sont développés.