On integer solutions to x² - dy² = 1, z² - 2dy² =1
Acta Arithmetica (1997)
- Volume: 82, Issue: 1, page 69-76
- ISSN: 0065-1036
Access Full Article
topHow to cite
topP. G. Walsh. "On integer solutions to x² - dy² = 1, z² - 2dy² =1." Acta Arithmetica 82.1 (1997): 69-76. <http://eudml.org/doc/207079>.
@article{P1997,
author = {P. G. Walsh},
journal = {Acta Arithmetica},
keywords = {quadratic diophantine equations; elliptic curves; fundamental units; quadratic fields; abc conjecture; simultaneous Pell equations},
language = {eng},
number = {1},
pages = {69-76},
title = {On integer solutions to x² - dy² = 1, z² - 2dy² =1},
url = {http://eudml.org/doc/207079},
volume = {82},
year = {1997},
}
TY - JOUR
AU - P. G. Walsh
TI - On integer solutions to x² - dy² = 1, z² - 2dy² =1
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 1
SP - 69
EP - 76
LA - eng
KW - quadratic diophantine equations; elliptic curves; fundamental units; quadratic fields; abc conjecture; simultaneous Pell equations
UR - http://eudml.org/doc/207079
ER -
References
top- [1] M. A. Bennett, On the number of solutions to simultaneous Pell equations, J. Reine Angew. Math., to appear. Zbl1044.11011
- [2] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166. Zbl0136.02806
- [3] J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70. Zbl0169.37401
- [4] J. H. E. Cohn, The Diophantine equation x⁴-Dy²=1, II, Acta Arith. 78 (1997), 401-403. Zbl0870.11018
- [5] W. Ljunggren, Zur Theorie der Gleichung x²+1=Dy⁴, Avh. Norske Vid. Akad. Oslo (1942), 1-27.
- [6] D. W. Masser, Open Problems, in: Proc. Sympos. Analytic Number Theory, W. W. L. Chen (ed.), London Imperial College, 1985.
- [7] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
- [8] N. Robbins, On Pell numbers of the form px², where p is a prime, Fibonacci Quart. (4) 22 (1984), 340-348.
- [9] P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin, Boston, 1970.
- [10] W. Sierpiński, Elementary Theory of Numbers, Państwowe Wydawnictwo Naukowe, Warszawa, 1964. Zbl0122.04402
- [11] C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers III, J. London Math. Soc. (2) 28 (1983), 211-217. Zbl0491.10010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.