On consecutive integers of the form ax², by² and cz²

Michael A. Bennett

Acta Arithmetica (1999)

  • Volume: 88, Issue: 4, page 363-370
  • ISSN: 0065-1036

How to cite

top

Michael A. Bennett. "On consecutive integers of the form ax², by² and cz²." Acta Arithmetica 88.4 (1999): 363-370. <http://eudml.org/doc/207253>.

@article{MichaelA1999,
author = {Michael A. Bennett},
journal = {Acta Arithmetica},
keywords = {simultaneous Pell equations; linear forms in logarithms; lower bounds for linear forms in logarithms of algebraic numbers},
language = {eng},
number = {4},
pages = {363-370},
title = {On consecutive integers of the form ax², by² and cz²},
url = {http://eudml.org/doc/207253},
volume = {88},
year = {1999},
}

TY - JOUR
AU - Michael A. Bennett
TI - On consecutive integers of the form ax², by² and cz²
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 4
SP - 363
EP - 370
LA - eng
KW - simultaneous Pell equations; linear forms in logarithms; lower bounds for linear forms in logarithms of algebraic numbers
UR - http://eudml.org/doc/207253
ER -

References

top
  1. [1] W. S. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), 355-359. Zbl0848.11007
  2. [2] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. 
  3. [3] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199. Zbl1044.11011
  4. [4] J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, II, Acta Arith. 78 (1997), 401-403. Zbl0870.11018
  5. [5] A. Khintchine, Continued Fractions, 3rd ed., P. Noordhoff, Groningen, 1963. Zbl0117.28503
  6. [6] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. Zbl0843.11036
  7. [7] W. Ljunggren, Litt om simultane Pellske ligninger, Norsk Mat. Tidsskr. 23 (1941), 132-138. 
  8. [8] W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. f. Math. og Naturvidenskab B 45 (1942), 61-70. Zbl68.0069.01
  9. [9] D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), 52-66. Zbl0882.11016
  10. [10] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46. Zbl0641.10014
  11. [11] D. T. Walker, On the diophantine equation mX² - nY² = ± 1, Amer. Math. Monthly 74 (1967), 504-513. Zbl0154.29604
  12. [12] P. G. Walsh, On two classes of simultaneous Pell equations with no solutions, Math. Comp., to appear. Zbl0911.11017
  13. [13] P. G. Walsh, On integer solutions to x² - dy² = 1, z² - 2dy² = 1, Acta Arith. 82 (1997), 69-76. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.