Euler's concordant forms

Ken Ono

Acta Arithmetica (1996)

  • Volume: 78, Issue: 2, page 101-123
  • ISSN: 0065-1036

How to cite

top

Ken Ono. "Euler's concordant forms." Acta Arithmetica 78.2 (1996): 101-123. <http://eudml.org/doc/206936>.

@article{KenOno1996,
author = {Ken Ono},
journal = {Acta Arithmetica},
keywords = {Euler's concordant forms problem; representations of integers; ternary quadratic forms; Euler's concordant forms; congruent number problem; elliptic curve; ranks of quadratic twists; pair of Pell equations; lacunary modular forms},
language = {eng},
number = {2},
pages = {101-123},
title = {Euler's concordant forms},
url = {http://eudml.org/doc/206936},
volume = {78},
year = {1996},
}

TY - JOUR
AU - Ken Ono
TI - Euler's concordant forms
JO - Acta Arithmetica
PY - 1996
VL - 78
IS - 2
SP - 101
EP - 123
LA - eng
KW - Euler's concordant forms problem; representations of integers; ternary quadratic forms; Euler's concordant forms; congruent number problem; elliptic curve; ranks of quadratic twists; pair of Pell equations; lacunary modular forms
UR - http://eudml.org/doc/206936
ER -

References

top
  1. [1] E. T. Bell, The problems of congruent numbers and concordant forms, Proc. Amer. Acad. Sci. 33 (1947), 326-328. Zbl0029.11007
  2. [2] M. Bennett, private communication. 
  3. [3] D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543-618. Zbl0721.11023
  4. [4] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. Zbl0359.14009
  5. [5] F. Diamond and K. Kramer, Modularity of a family of elliptic curves, Math. Res. Lett. 2 (3) (1995), 299-304. Zbl0867.11041
  6. [6] L. Euler, De binis formulis speciei xx+myy et xx+nyy inter se concordibus et disconcordibus, Opera Omnia Series 1 vol. 5 (1780), 48-60, Leipzig-Berlin-Zürich, 1944. 
  7. [7] D. Husemöller, Elliptic Curves, Springer, New York, 1987. 
  8. [8] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992. 
  9. [9] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1984. Zbl0553.10019
  10. [10] V. A. Kolyvagin, Finiteness of E(ℚ) and the Tate-Shafarevich group of E(ℚ) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540 (in Russian). 
  11. [11] J. Lehman, Levels of positive definite ternary quadratic forms, Math. Comp. 58, 197 (1992), 399-417. Zbl0754.11011
  12. [12] L. Mai and M. R. Murty, A note on quadratric twists of an elliptic curve, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes, Amer. Math. Soc., 1994, 121-124. Zbl0806.14025
  13. [13] D. Masser and J. Rickert, Simultaneous Pell equations, J. Number Theory, to appear. 
  14. [14] M. R. Murty and V. K. Murty, Mean values of derivatives of modular L-series, Ann. of Math. 133 (1991), 447-475. Zbl0745.11032
  15. [15] K. Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math., to appear. Zbl0876.11025
  16. [16] K. Ono, Twists of elliptic curves, Compositio Math., to appear. Zbl0887.11025
  17. [17] T. Ono, Variations on a Theme of Euler, Plenum, New York, 1994. 
  18. [18] J. Rickert, Simultaneous rational approximations and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. Zbl0786.11040
  19. [19] H. P. Schlickewei, The number of subspaces occurring in the p-adic subspace theorem in Diophantine approximation, J. Reine Angew. Math. 406 (1990), 44-108. Zbl0693.10027
  20. [20] W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551. 
  21. [21] W. M. Schmidt, Diophantine Approximations, Lecture Notes in Math. 785, Springer, 1980. Zbl0432.10029
  22. [22] B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), 511-523. Zbl0020.20201
  23. [23] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. 22 (1976), 227-260. Zbl0355.10021
  24. [24] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971. Zbl0221.10029
  25. [25] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481. Zbl0266.10022
  26. [26] C. Siegel, Über die analytische Theorie der quadratischen formen, in: Gesammelte Abhandlungen, Bd. 3, Springer, 1966, 326-405. 
  27. [27] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
  28. [28] J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, New York, 1992. Zbl0752.14034
  29. [29] J. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334. Zbl0515.10013
  30. [30] J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484. Zbl0431.10015
  31. [31] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141 (1995), 443-551. Zbl0823.11029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.