On the largest prime factor of
Florian Luca[1]; Igor E. Shparlinski[2]
- [1] Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
- [2] Macquarie University Sydney, NSW 2109, Australia
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 859-870
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, and Shparlinski, Igor E.. "On the largest prime factor of $n!+ 2^n-1$." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 859-870. <http://eudml.org/doc/249430>.
@article{Luca2005,
abstract = {For an integer $n\ge 2$ we denote by $P(n)$ the largest prime factor of $n$. We obtain several upper bounds on the number of solutions of congruences of the form $n!+2^n - 1 \equiv 0 \hspace\{4.44443pt\}(\@mod \; q)$ and use these bounds to show that\[\limsup \_\{n \rightarrow \infty \}P(n!+2^n - 1)/n \ge (2 \pi ^2 + 3)/18. \]},
affiliation = {Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México; Macquarie University Sydney, NSW 2109, Australia},
author = {Luca, Florian, Shparlinski, Igor E.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {largest prime factor; number of distinct prime factors; number of solutions of congruences},
language = {eng},
number = {3},
pages = {859-870},
publisher = {Université Bordeaux 1},
title = {On the largest prime factor of $n!+ 2^n-1$},
url = {http://eudml.org/doc/249430},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Luca, Florian
AU - Shparlinski, Igor E.
TI - On the largest prime factor of $n!+ 2^n-1$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 859
EP - 870
AB - For an integer $n\ge 2$ we denote by $P(n)$ the largest prime factor of $n$. We obtain several upper bounds on the number of solutions of congruences of the form $n!+2^n - 1 \equiv 0 \hspace{4.44443pt}(\@mod \; q)$ and use these bounds to show that\[\limsup _{n \rightarrow \infty }P(n!+2^n - 1)/n \ge (2 \pi ^2 + 3)/18. \]
LA - eng
KW - largest prime factor; number of distinct prime factors; number of solutions of congruences
UR - http://eudml.org/doc/249430
ER -
References
top- R. C. Baker, G. Harman, The Brun-Titchmarsh theorem on average. Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), Progr. Math. 138, Birkhäuser, Boston, MA, 1996, 39–103, Zbl0853.11078MR1399332
- R. C. Baker, G. Harman, Shifted primes without large prime factors. Acta Arith. 83 (1998), 331–361. Zbl0994.11033MR1610553
- P. Erdős, R. Murty, On the order of . Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97. Zbl0931.11034
- P. Erdős, C. Stewart, On the greatest and least prime factors of . J. London Math. Soc. 13 (1976), 513–519. Zbl0332.10028MR409334
- É. Fouvry, Théorème de Brun-Titchmarsh: Application au théorème de Fermat. Invent. Math. 79 (1985), 383–407. Zbl0557.10035MR778134
- H.-K. Indlekofer, N. M. Timofeev, Divisors of shifted primes. Publ. Math. Debrecen 60 (2002), 307–345. Zbl1017.11042MR1898566
- F. Luca, I. E. Shparlinski, Prime divisors of shifted factorials. Bull. London Math. Soc. 37 (2005), 809–817. Zbl1098.11047MR2186713
- M.R. Murty, S. Wong, The conjecture and prime divisors of the Lucas and Lehmer sequences. Number theory for the millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 43–54. Zbl1030.11012MR1956267
- F. Pappalardi, On the order of finitely generated subgroups of and divisors of . J. Number Theory 57 (1996), 207–222. Zbl0847.11049MR1382747
- K. Prachar, Primzahlverteilung. Springer-Verlag, Berlin, 1957. Zbl0080.25901MR87685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.