Arithmetic of the modular function
Acta Arithmetica (1998)
- Volume: 84, Issue: 2, page 129-143
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topChang Heon Kim, and Ja Kyung Koo. "Arithmetic of the modular function $j_{1,4}$." Acta Arithmetica 84.2 (1998): 129-143. <http://eudml.org/doc/207138>.
@article{ChangHeonKim1998,
abstract = {We find a generator $j_\{1,4\}$ of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator $N(j_\{1,4\})$ which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.},
author = {Chang Heon Kim, Ja Kyung Koo},
journal = {Acta Arithmetica},
keywords = {modular function; normalized generator of a function field; moonshine; complex multiplication; class fields over imaginary quadratic fields},
language = {eng},
number = {2},
pages = {129-143},
title = {Arithmetic of the modular function $j_\{1,4\}$},
url = {http://eudml.org/doc/207138},
volume = {84},
year = {1998},
}
TY - JOUR
AU - Chang Heon Kim
AU - Ja Kyung Koo
TI - Arithmetic of the modular function $j_{1,4}$
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 2
SP - 129
EP - 143
AB - We find a generator $j_{1,4}$ of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator $N(j_{1,4})$ which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
LA - eng
KW - modular function; normalized generator of a function field; moonshine; complex multiplication; class fields over imaginary quadratic fields
UR - http://eudml.org/doc/207138
ER -
References
top- [1] Borcherds, R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444. Zbl0799.17014
- [2] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., and Wilson, R.A., Atlas of Finite Groups, Clarendon Press, 1985. Zbl0568.20001
- [3] Conway, J.H. and Norton, S.P., Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339. Zbl0424.20010
- [4] Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272. Zbl0025.02003
- [5] Foster, O., Lectures on Riemann Surfaces, Springer, 1981.
- [6] Frenkel, I.B., Lepowsky, J., and Meurman, A., Vertex Operator Algebras and the Monster, Academic Press, Boston, 1988. Zbl0674.17001
- [7] Frenkel, I.B., Lepowsky, J., and Meurman, A., A natural representation of the Fischer-Griess monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 3256-3260. Zbl0543.20016
- [8] Kim, C.H. and Koo, J.K., On the modular function j₄ of level 4, preprint. Zbl0921.11024
- [9] Kim, C.H. and Koo, J.K., On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), 291-297. Zbl0894.11018
- [10] Kim, C.H. and Koo, J.K., On the modular function , in preparation.
- [11] Koike, M., On replication formula and Hecke operators, preprint, Nagoya University.
- [12] Lang, S., Algebra, Addison-Wesley, 1993.
- [13] Lang, S.,, Elliptic Functions, Springer, 1987.
- [14] Néron, A., Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. 21 (1964), 5-128. Zbl0132.41403
- [15] Norton, S.P., More on moonshine, in: Computational Group Theory, Academic Press, London, 1984, 185-195.
- [16] Rankin, R., Modular Forms and Functions, Cambridge Univ. Press, Cambridge, 1977.
- [17] Schoeneberg, B., Elliptic Modular Functions, Springer, 1973. Zbl0285.10016
- [18] Serre, J.-P. and Tate, J., Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517. Zbl0172.46101
- [19] Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Tokyo, 1971. Zbl0221.10029
- [20] Thompson, J.G., Some numerology between the Fischer-Griess monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), 352-353. Zbl0425.20016
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.