Arithmetic of the modular function j 1 , 4

Chang Heon Kim; Ja Kyung Koo

Acta Arithmetica (1998)

  • Volume: 84, Issue: 2, page 129-143
  • ISSN: 0065-1036

Abstract

top
We find a generator j 1 , 4 of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator N ( j 1 , 4 ) which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.

How to cite

top

Chang Heon Kim, and Ja Kyung Koo. "Arithmetic of the modular function $j_{1,4}$." Acta Arithmetica 84.2 (1998): 129-143. <http://eudml.org/doc/207138>.

@article{ChangHeonKim1998,
abstract = {We find a generator $j_\{1,4\}$ of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator $N(j_\{1,4\})$ which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.},
author = {Chang Heon Kim, Ja Kyung Koo},
journal = {Acta Arithmetica},
keywords = {modular function; normalized generator of a function field; moonshine; complex multiplication; class fields over imaginary quadratic fields},
language = {eng},
number = {2},
pages = {129-143},
title = {Arithmetic of the modular function $j_\{1,4\}$},
url = {http://eudml.org/doc/207138},
volume = {84},
year = {1998},
}

TY - JOUR
AU - Chang Heon Kim
AU - Ja Kyung Koo
TI - Arithmetic of the modular function $j_{1,4}$
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 2
SP - 129
EP - 143
AB - We find a generator $j_{1,4}$ of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator $N(j_{1,4})$ which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
LA - eng
KW - modular function; normalized generator of a function field; moonshine; complex multiplication; class fields over imaginary quadratic fields
UR - http://eudml.org/doc/207138
ER -

References

top
  1. [1] Borcherds, R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444. Zbl0799.17014
  2. [2] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., and Wilson, R.A., Atlas of Finite Groups, Clarendon Press, 1985. Zbl0568.20001
  3. [3] Conway, J.H. and Norton, S.P., Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308-339. Zbl0424.20010
  4. [4] Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272. Zbl0025.02003
  5. [5] Foster, O., Lectures on Riemann Surfaces, Springer, 1981. 
  6. [6] Frenkel, I.B., Lepowsky, J., and Meurman, A., Vertex Operator Algebras and the Monster, Academic Press, Boston, 1988. Zbl0674.17001
  7. [7] Frenkel, I.B., Lepowsky, J., and Meurman, A., A natural representation of the Fischer-Griess monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 3256-3260. Zbl0543.20016
  8. [8] Kim, C.H. and Koo, J.K., On the modular function j₄ of level 4, preprint. Zbl0921.11024
  9. [9] Kim, C.H. and Koo, J.K., On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), 291-297. Zbl0894.11018
  10. [10] Kim, C.H. and Koo, J.K., On the modular function j 1 , 2 , in preparation. 
  11. [11] Koike, M., On replication formula and Hecke operators, preprint, Nagoya University. 
  12. [12] Lang, S., Algebra, Addison-Wesley, 1993. 
  13. [13] Lang, S.,, Elliptic Functions, Springer, 1987. 
  14. [14] Néron, A., Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. 21 (1964), 5-128. Zbl0132.41403
  15. [15] Norton, S.P., More on moonshine, in: Computational Group Theory, Academic Press, London, 1984, 185-195. 
  16. [16] Rankin, R., Modular Forms and Functions, Cambridge Univ. Press, Cambridge, 1977. 
  17. [17] Schoeneberg, B., Elliptic Modular Functions, Springer, 1973. Zbl0285.10016
  18. [18] Serre, J.-P. and Tate, J., Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517. Zbl0172.46101
  19. [19] Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Tokyo, 1971. Zbl0221.10029
  20. [20] Thompson, J.G., Some numerology between the Fischer-Griess monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), 352-353. Zbl0425.20016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.