# The continued fraction expansion of α with μ(α) = 3

Acta Arithmetica (1998)

- Volume: 84, Issue: 4, page 337-374
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topShin-Ichi Yasutomi. "The continued fraction expansion of α with μ(α) = 3." Acta Arithmetica 84.4 (1998): 337-374. <http://eudml.org/doc/207148>.

@article{Shin1998,

author = {Shin-Ichi Yasutomi},

journal = {Acta Arithmetica},

keywords = {continued fraction expansion; Lagrange spectrum; Markov spectrum; Bernoulli sequence; super Bernoulli sequence},

language = {eng},

number = {4},

pages = {337-374},

title = {The continued fraction expansion of α with μ(α) = 3},

url = {http://eudml.org/doc/207148},

volume = {84},

year = {1998},

}

TY - JOUR

AU - Shin-Ichi Yasutomi

TI - The continued fraction expansion of α with μ(α) = 3

JO - Acta Arithmetica

PY - 1998

VL - 84

IS - 4

SP - 337

EP - 374

LA - eng

KW - continued fraction expansion; Lagrange spectrum; Markov spectrum; Bernoulli sequence; super Bernoulli sequence

UR - http://eudml.org/doc/207148

ER -

## References

top- [1] H. Cohn, Some direct limits of primitive homotopy words and of Markoff geodesics, in: Discontinuous Groups and Riemann Surfaces, Univ. of Maryland, 1973, Ann. of Math. Stud. 79, Princeton, 1974, 91-98.
- [2] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, 1989. Zbl0685.10023
- [3] S. Ito and S. Yasutomi, On continued fraction, substitution and characteristic sequences [nx + y] - [(n-1)x + y], Japan. J. Math. 16 (1990), 287-306. Zbl0721.11009
- [4] W. F. Lunnon and A. B. Pleasants, Characterization of two-distance sequences, J. Austral. Math. Soc. Ser. A 53 (1992), 198-218. Zbl0759.11005
- [5] A. Markoff [A. Markov], Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406; II, Math. Ann.. 17 (1880), 379-399.
- [6] A. Markoff [A. Markov], Sur une question de Jean Bernoulli, Math. Ann.. 19 (1882), 27-36.
- [7] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math 62 (1940), 1-42. Zbl0022.34003
- [8] I. Nakashima, J. Tamura and S. Yasutomi, Modified complexity and *-Sturmian word, preprint, 1997. Zbl0928.11012
- [9] O. Perron, Die Lehre von den Kettenbrüchen I, Teubner, Stuttgart, 1954. Zbl0056.05901
- [10] A. M. Rocket and P. Szüsz, Continued Fractions, World Scientific, 1992.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.