The continued fraction expansion of α with μ(α) = 3

Shin-Ichi Yasutomi

Acta Arithmetica (1998)

  • Volume: 84, Issue: 4, page 337-374
  • ISSN: 0065-1036

How to cite

top

Shin-Ichi Yasutomi. "The continued fraction expansion of α with μ(α) = 3." Acta Arithmetica 84.4 (1998): 337-374. <http://eudml.org/doc/207148>.

@article{Shin1998,
author = {Shin-Ichi Yasutomi},
journal = {Acta Arithmetica},
keywords = {continued fraction expansion; Lagrange spectrum; Markov spectrum; Bernoulli sequence; super Bernoulli sequence},
language = {eng},
number = {4},
pages = {337-374},
title = {The continued fraction expansion of α with μ(α) = 3},
url = {http://eudml.org/doc/207148},
volume = {84},
year = {1998},
}

TY - JOUR
AU - Shin-Ichi Yasutomi
TI - The continued fraction expansion of α with μ(α) = 3
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 4
SP - 337
EP - 374
LA - eng
KW - continued fraction expansion; Lagrange spectrum; Markov spectrum; Bernoulli sequence; super Bernoulli sequence
UR - http://eudml.org/doc/207148
ER -

References

top
  1. [1] H. Cohn, Some direct limits of primitive homotopy words and of Markoff geodesics, in: Discontinuous Groups and Riemann Surfaces, Univ. of Maryland, 1973, Ann. of Math. Stud. 79, Princeton, 1974, 91-98. 
  2. [2] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, 1989. Zbl0685.10023
  3. [3] S. Ito and S. Yasutomi, On continued fraction, substitution and characteristic sequences [nx + y] - [(n-1)x + y], Japan. J. Math. 16 (1990), 287-306. Zbl0721.11009
  4. [4] W. F. Lunnon and A. B. Pleasants, Characterization of two-distance sequences, J. Austral. Math. Soc. Ser. A 53 (1992), 198-218. Zbl0759.11005
  5. [5] A. Markoff [A. Markov], Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406; II, Math. Ann.. 17 (1880), 379-399. 
  6. [6] A. Markoff [A. Markov], Sur une question de Jean Bernoulli, Math. Ann.. 19 (1882), 27-36. 
  7. [7] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math 62 (1940), 1-42. Zbl0022.34003
  8. [8] I. Nakashima, J. Tamura and S. Yasutomi, Modified complexity and *-Sturmian word, preprint, 1997. Zbl0928.11012
  9. [9] O. Perron, Die Lehre von den Kettenbrüchen I, Teubner, Stuttgart, 1954. Zbl0056.05901
  10. [10] A. M. Rocket and P. Szüsz, Continued Fractions, World Scientific, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.