*-sturmian words and complexity

Izumi Nakashima; Jun-Ichi Tamura; Shin-Ichi Yasutomi

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 3, page 767-804
  • ISSN: 1246-7405

Abstract

top
We give analogs of the complexity p ( n ) and of Sturmian words which are called respectively the * -complexity p * ( n ) and * -Sturmian words. We show that the class of * -Sturmian words coincides with the class of words satisfying p * ( n ) n + 1 , and we determine the structure of * -Sturmian words. For a class of words satisfying p * ( n ) = n + 1 , we give a general formula and an upper bound for p ( n ) . Using this general formula, we give explicit formulae for p ( n ) for some words belonging to this class. In general, p ( n ) can take large values, namely, p ( n ) 2 n 1 - ϵ holds for some * -Sturmian words; however the topological entropy of any * -Sturmian word is zero.

How to cite

top

Nakashima, Izumi, Tamura, Jun-Ichi, and Yasutomi, Shin-Ichi. "*-sturmian words and complexity." Journal de théorie des nombres de Bordeaux 15.3 (2003): 767-804. <http://eudml.org/doc/249073>.

@article{Nakashima2003,
abstract = {We give analogs of the complexity $p(n)$ and of Sturmian words which are called respectively the $\ast $-complexity $p_\ast (n)$ and $\ast $-Sturmian words. We show that the class of $\ast $-Sturmian words coincides with the class of words satisfying $p_\ast (n) \le n + 1$, and we determine the structure of $\ast $-Sturmian words. For a class of words satisfying $p_\ast (n) = n + 1$, we give a general formula and an upper bound for $p(n)$. Using this general formula, we give explicit formulae for $p(n)$ for some words belonging to this class. In general, $p(n)$ can take large values, namely, $p(n) \ge 2^\{n^\{1- \epsilon \}\}$ holds for some $\ast $-Sturmian words; however the topological entropy of any $\ast $-Sturmian word is zero.},
author = {Nakashima, Izumi, Tamura, Jun-Ichi, Yasutomi, Shin-Ichi},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Sturmian words; complexity; approximation of rational lines; infinite occurrences},
language = {eng},
number = {3},
pages = {767-804},
publisher = {Université Bordeaux I},
title = {*-sturmian words and complexity},
url = {http://eudml.org/doc/249073},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Nakashima, Izumi
AU - Tamura, Jun-Ichi
AU - Yasutomi, Shin-Ichi
TI - *-sturmian words and complexity
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 767
EP - 804
AB - We give analogs of the complexity $p(n)$ and of Sturmian words which are called respectively the $\ast $-complexity $p_\ast (n)$ and $\ast $-Sturmian words. We show that the class of $\ast $-Sturmian words coincides with the class of words satisfying $p_\ast (n) \le n + 1$, and we determine the structure of $\ast $-Sturmian words. For a class of words satisfying $p_\ast (n) = n + 1$, we give a general formula and an upper bound for $p(n)$. Using this general formula, we give explicit formulae for $p(n)$ for some words belonging to this class. In general, $p(n)$ can take large values, namely, $p(n) \ge 2^{n^{1- \epsilon }}$ holds for some $\ast $-Sturmian words; however the topological entropy of any $\ast $-Sturmian word is zero.
LA - eng
KW - Sturmian words; complexity; approximation of rational lines; infinite occurrences
UR - http://eudml.org/doc/249073
ER -

References

top
  1. [1] P. Arnoux, C. Mauduit, I. Shiokawa, J.-I. Tamura, Complexity of sequences defined by billiards in the cube. Bull. Soc. Math. France122 (1994), 1-12. Zbl0791.58034MR1259106
  2. [2] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991), 199-215. Zbl0789.28011MR1116845
  3. [3] Y. Baryshnikov, Complexity of trajectories in rectangular billiards. Comm. Math. Phys.174 (1995), 43-56. Zbl0839.11006MR1372799
  4. [4] T.C. Brown, Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull.36 (1993), 15-21. Zbl0804.11021MR1205889
  5. [5] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth. Math. Systems Theory7 (1973), 138-153. Zbl0256.54028MR322838
  6. [6] S. Ferenczi, Les transformations de Chacon: combinatoire, structure géométrique, lien avec les systèmes de complexité 2n + 1. Bull. Soc. Math. France123 (1995), 271-292. Zbl0855.28008MR1340291
  7. [7] S. Ito, S.-I. Yasutomi, On continued fraction, substitutions and characteristic sequences [nx + y] — [(n - 1)x + y]. Japan. J. Math.16 (1990), 287-306. Zbl0721.11009MR1091163
  8. [8] W.F. Lunnon, P.A.B. Pleasants, Characterization of two-distance sequences. J. Austral. Math. Soc. (Ser. A) 53 (1992), 198-218. Zbl0759.11005MR1175712
  9. [9] M. Morse, G.A. Hedlund, Symbolic dynamics. Amer. J. Math.60 (1938), 815-866. Zbl0019.33502MR1507944JFM64.0798.04
  10. [10] M. Morse, G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
  11. [11] I. Nakashima, J.-I. Tamura, S.-I. Yasutomi, Modified complexity and *-Sturmian word. Proc. Japan Acad. (Ser. A) Math. Sci.75 (1999), 26-28. Zbl0928.11012MR1700732
  12. [12] G. Rote, Sequences with subword complexity 2n. J. Number Theory.46 (1994), 196-213. Zbl0804.11023MR1269252
  13. [13] S.-I. Yasutomi, The continued fraction expansion of α with μ(α) = 3. Acta Arith.84 (1998), 337-374. Zbl0967.11024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.