An explicit version of Birch's Theorem

Trevor D. Wooley

Acta Arithmetica (1998)

  • Volume: 85, Issue: 1, page 79-96
  • ISSN: 0065-1036

How to cite

top

Trevor D. Wooley. "An explicit version of Birch's Theorem." Acta Arithmetica 85.1 (1998): 79-96. <http://eudml.org/doc/207155>.

@article{TrevorD1998,
author = {Trevor D. Wooley},
journal = {Acta Arithmetica},
keywords = {homogeneous polynomials; rational zero; zeros of forms; Birch's theorem},
language = {eng},
number = {1},
pages = {79-96},
title = {An explicit version of Birch's Theorem},
url = {http://eudml.org/doc/207155},
volume = {85},
year = {1998},
}

TY - JOUR
AU - Trevor D. Wooley
TI - An explicit version of Birch's Theorem
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 1
SP - 79
EP - 96
LA - eng
KW - homogeneous polynomials; rational zero; zeros of forms; Birch's theorem
UR - http://eudml.org/doc/207155
ER -

References

top
  1. [1] B. J. Birch, Homogeneous forms of odd degree in a large number of variables, Mathematika 4 (1957), 102-105. Zbl0081.04501
  2. [2] B. J. Birch, Forms in many variables, Proc. Roy. Soc. London Ser. A 265 (1961/62), 245-263. Zbl0103.03102
  3. [3] J. Brüdern and R. J. Cook, On simultaneous diagonal equations and inequalities, Acta Arith. 62 (1992), 125-149. Zbl0774.11015
  4. [4] H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 193-232. Zbl0084.27202
  5. [5] H. Davenport, Cubic forms in 16 variables, Proc. Roy. Soc. London Ser. A 272 (1963), 285-303. Zbl0107.04102
  6. [6] H. Davenport and D. J. Lewis, Simultaneous equations of additive type, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 557-595. Zbl0207.35304
  7. [7] D. B. Leep and W. M. Schmidt, Systems of homogeneous equations, Invent. Math. 71 (1983), 539-549. Zbl0504.10010
  8. [8] D. J. Lewis and R. Schulze-Pillot, Linear spaces on the intersection of cubic hypersurfaces, Monatsh. Math. 97 (1984), 277-285. Zbl0546.10018
  9. [9] L. Low, J. Pitman and A. Wolff, Simultaneous diagonal congruences, J. Number Theory 36 (1990), 1-11. Zbl0643.10011
  10. [10] W. M. Schmidt, On cubic polynomials IV. Systems of rational equations, Monatsh. Math. 93 (1982), 329-348. Zbl0481.10015
  11. [11] W. M. Schmidt, Analytic methods for congruences, Diophantine equations and approximations, in: Proceedings of the International Congress of Mathematicians (Warsaw, 1983), Vol. 1, PWN, Warszawa, 1984, 515-524. 
  12. [12] W. M. Schmidt, The density of integer points on homogeneous varieties, Acta Math. 154 (1985), 243-296. Zbl0561.10010
  13. [13] V. A. Tartakovskiĭ, Die asymptotische Gesetze der 'allgemeinen' Diophantischen Analyse mit vielen Unbekannten, Izv. Akad. Nauk SSSR Ser. Mat.-Fiz. 1935, 483-524. Zbl61.1068.01
  14. [14] T. D. Wooley, On the local solubility of diophantine systems, Compositio Math. 111 (1998), 149-165. Zbl0892.11011
  15. [15] T. D. Wooley, Forms in many variables, in: Analytic Number Theory: Proceedings of the 39th Taniguchi International Symposium, Kyoto, May 1996, Y. Motohashi (ed.), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, 1997, 361-376. Zbl0905.11022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.