Détermination de courbes elliptiques pour la conjecture de Szpiro

Abderrahmane Nitaj

Acta Arithmetica (1998)

  • Volume: 85, Issue: 4, page 351-376
  • ISSN: 0065-1036

How to cite

top

Abderrahmane Nitaj. "Détermination de courbes elliptiques pour la conjecture de Szpiro." Acta Arithmetica 85.4 (1998): 351-376. <http://eudml.org/doc/207174>.

@article{AbderrahmaneNitaj1998,
author = {Abderrahmane Nitaj},
journal = {Acta Arithmetica},
keywords = {courbe elliptique; isogénie; conjecture de Szpiro; elliptic curves; isogenies; Szpiro's conjecture; Szpiro's quotient; diophantine equations},
language = {fre},
number = {4},
pages = {351-376},
title = {Détermination de courbes elliptiques pour la conjecture de Szpiro},
url = {http://eudml.org/doc/207174},
volume = {85},
year = {1998},
}

TY - JOUR
AU - Abderrahmane Nitaj
TI - Détermination de courbes elliptiques pour la conjecture de Szpiro
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 4
SP - 351
EP - 376
LA - fre
KW - courbe elliptique; isogénie; conjecture de Szpiro; elliptic curves; isogenies; Szpiro's conjecture; Szpiro's quotient; diophantine equations
UR - http://eudml.org/doc/207174
ER -

References

top
  1. [1] M. Ayad, Points S-entiers des courbes elliptiques, Manuscripta Math. 76 (1992), 305-324. Zbl0773.14014
  2. [2] C. Batut, D. Bernardi, H. Cohen and M. Olivier, PARI-GP, a computer system for number theory, Version 1.39, ftp://megrez.ceremab.u-bordeaux.fr/~pub/pari/. 
  3. [3] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, Berlin, 1993. 
  4. [4] I. Connell, APECS, Version 3.7, 1996, ftp://math.mcgill.ca/pub/apecs/. 
  5. [5] J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge, 1992. Zbl0758.14042
  6. [6] E. Fouvry, M. Nair et G. Tenenbaum, L'ensemble exceptionnel dans la conjecture de Szpiro, Bull. Soc. Math. France 120 (1992), 485-506. Zbl0770.11030
  7. [7] M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419-450. Zbl0657.14018
  8. [8] D. Husemoller, Elliptic Curves, Grad. Texts in Math. 111, Springer, Berlin, 1986. 
  9. [9] D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), 193-237. Zbl0331.14010
  10. [10] T. Nagell, Recherches sur l'arithmétique des cubiques planes du premier genre dans un domaine de rationalité quelconque, Nova Acta Soc. Sci. Upsal, Ser. IV 15, 6 (1952), 1-66. Zbl0048.27102
  11. [11] A. Nitaj, Algorithms for finding good examples for the abc and Szpiro conjectures, Experiment. Math. 3 (1993), 223-230. Zbl0818.11050
  12. [12] A. Nitaj, Tables of good abc-examples, preprint, Saarbrücken, 1997. 
  13. [13] J. Oesterlé, Nouvelles approches du 'théorème' de Fermat, Séminaire Bourbaki 1987-88, no. 694, Astérisque 161-162 (1988), 165-186. 
  14. [14] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, Berlin, 1986. 
  15. [15] SIMATH, a computer algebra system, Version 3.10.3, Simath-Gruppe, Saarbrücken, 1996, ftp://ftp.math.uni-sb.de:/pub/simath. 
  16. [16] L. Szpiro, Propriétés numériques du faisceau dualisant relatif, dans : Pinceaux de Courbes de Genre au Moins Deux, Astérisque 86 (1981), 44-78. 
  17. [17] L. Szpiro, Discriminant et conducteur, dans : Séminaire sur les Pinceaux de Courbes Elliptiques, Astérisque 183 (1990), 7-17. 
  18. [18] H. M. Tschöpe and H. G. Zimmer, Computation of the Néron-Tate height on elliptic curves, Math. Comp. 48 (1987), 351-370. Zbl0611.14028
  19. [19] J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. I Math. 273 (1971), 238-241. Zbl0225.14014
  20. [20] B. M. M. de Weger, A + B = C and big III's, Quart. J. Math. Oxford Ser. (2) 49 (1998), 105-128. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.