Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich

Abderrahmane Nitaj

Acta Arithmetica (2000)

  • Volume: 93, Issue: 4, page 303-327
  • ISSN: 0065-1036

How to cite

top

Abderrahmane Nitaj. "Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich." Acta Arithmetica 93.4 (2000): 303-327. <http://eudml.org/doc/207416>.

@article{AbderrahmaneNitaj2000,
author = {Abderrahmane Nitaj},
journal = {Acta Arithmetica},
keywords = {courbe de Frey-Hellegouarch; groupe de Tate-Shafarevich; conjecture de Goldfeld-Szpiro; Goldfeld-Szpiro conjecture},
language = {fre},
number = {4},
pages = {303-327},
title = {Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich},
url = {http://eudml.org/doc/207416},
volume = {93},
year = {2000},
}

TY - JOUR
AU - Abderrahmane Nitaj
TI - Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 4
SP - 303
EP - 327
LA - fre
KW - courbe de Frey-Hellegouarch; groupe de Tate-Shafarevich; conjecture de Goldfeld-Szpiro; Goldfeld-Szpiro conjecture
UR - http://eudml.org/doc/207416
ER -

References

top
  1. [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160. 
  2. [2] C. Batut, D. Bernardi, H. Cohen and M. Olivier, PARI-GP, a computer system for number theory, Version 2.0, ftp://megrez.math.u-bordeaux.fr/pub/pari/. 
  3. [3] R. Bölling, Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig groß werden, Math. Nachr. 67 (1975), 157-179. Zbl0314.14008
  4. [4] J. W. S. Cassels, Arithmetic on curves of genus 1. VI. The Tate-Šafarevič group can be arbitrarily large, J. Reine Angew. Math. 214/215 (1964), 65-70. Zbl0236.14012
  5. [5] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, Berlin, 1993. 
  6. [6] I. Connell, APECS, Version 4.36 1998, ftp://math.mcgill.ca/pub/apecs/. 
  7. [7] J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, Cambridge, 1992. Zbl0758.14042
  8. [8] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: Antwerp II: Modular Functions of One Variable, Lecture Notes in Math. 349, Springer, 1973, 501-597. 
  9. [9] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137-166. Zbl0867.11032
  10. [10] F. Diamond and K. Kramer, Modularity of a family of elliptic curves, Math. Res. Lett. 2 (1995), 299-304. Zbl0867.11041
  11. [11] G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposition. Math. 4 (1986), 35-66. Zbl0596.14022
  12. [12] J. Gebel and H. G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over ℚ, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994, 61-83. Zbl0809.14024
  13. [13] D. Goldfeld and D. Lieman, Effective bounds on the size of the Tate-Shafarevich group, Math. Res. Lett. 3 (1996), 309-318. Zbl0869.11053
  14. [14] D. Goldfeld and L. Szpiro, Bounds for the order of the Tate-Shafarevich group, Compositio Math. 97 (1995), 71-87. Zbl0860.11032
  15. [15] B. H. Gross, Kolyvagin's work on modular elliptic curves, in: L-functions and Arithmetic (Durham, 1989), Cambridge Univ. Press, 1991, 235-256. Zbl0743.14021
  16. [16] D. Husemöller, Elliptic Curves, Grad. Texts in Math. 111, Springer, Berlin, 1986. 
  17. [17] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 175-198. Zbl0468.10015
  18. [18] V. A. Kolyvagin, Finiteness of E(ℚ) and Ш(E/ℚ) for a subclass of Weil curves, Math. USSR-Izv. 32 (1989), 523-541. 
  19. [19] K. Kramer, A family of semistable elliptic curves with large Tate-Shafarevitch groups, Proc. Amer. Math. Soc. 89 (1983), 379-386. Zbl0567.14018
  20. [20] D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), 193-237. Zbl0331.14010
  21. [21] S. Lang, Conjectured diophantine estimates on elliptic curves, in: Progr. Math. 35, Birkhäuser, 1983, 155-172. Zbl0529.14017
  22. [22] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. Zbl0488.12001
  23. [23] L. Mai and M. R. Murty, A note on quadratic twists of an elliptic curve, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994, 121-124. Zbl0806.14025
  24. [24] Y. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), 7-78. 
  25. [25] A. Nitaj, Détermination de courbes elliptiques pour la conjecture de Szpiro, Acta Arith. 85 (1998), 351-376. Zbl0914.11028
  26. [26] A. Nitaj, Tables of good abc-examples, preprint, Saarbrücken, 1997. 
  27. [27] C. S. Rajan, On the size of the Shafarevich-Tate group of elliptic curves over function fields, Compositio Math. 105 (1997), 29-41. Zbl1044.11583
  28. [28] D. E. Rohrlich, Galois theory, elliptic curves, and root numbers, ibid. 100 (1996), 311-349. Zbl0860.11033
  29. [29] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560. Zbl0628.14018
  30. [30] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, Berlin, 1986. 
  31. [31] Simath Group, SIMATH, a computer algebra system, Version 4.2, Saarbrücken, 1998, ftp://ftp.math.uni-sb.de:/pub/simath. 
  32. [32] B. M. M. de Weger, A+B=C and big Ш's, Quart. J. Math. Oxford Ser. (2) 49 (1998), 105-128. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.