The canonical height and integral points on elliptic curves.

J.H. Silverman; M. Hindry

Inventiones mathematicae (1988)

  • Volume: 93, Issue: 2, page 419-450
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Silverman, J.H., and Hindry, M.. "The canonical height and integral points on elliptic curves.." Inventiones mathematicae 93.2 (1988): 419-450. <http://eudml.org/doc/143604>.

@article{Silverman1988,
author = {Silverman, J.H., Hindry, M.},
journal = {Inventiones mathematicae},
keywords = {integral points; Lang's conjecture; canonical height; Szpiro's conjecture; discriminant; bound for the number of torsion points on elliptic curves},
number = {2},
pages = {419-450},
title = {The canonical height and integral points on elliptic curves.},
url = {http://eudml.org/doc/143604},
volume = {93},
year = {1988},
}

TY - JOUR
AU - Silverman, J.H.
AU - Hindry, M.
TI - The canonical height and integral points on elliptic curves.
JO - Inventiones mathematicae
PY - 1988
VL - 93
IS - 2
SP - 419
EP - 450
KW - integral points; Lang's conjecture; canonical height; Szpiro's conjecture; discriminant; bound for the number of torsion points on elliptic curves
UR - http://eudml.org/doc/143604
ER -

Citations in EuDML Documents

top
  1. E. Fouvry, M. Nair, G. Tenenbaum, L'ensemble exceptionnel dans la conjecture de Szpiro
  2. Mohamed Krir, Minorant de la dérivée au point 1 de la fonction L attachée à une courbe elliptique de Weil
  3. Rick Miranda, Ulf Persson, Torsion groups of elliptic surfaces
  4. Abderrahmane Nitaj, Détermination de courbes elliptiques pour la conjecture de Szpiro
  5. Dorian Goldfeld, Lucien Szpiro, Bounds for the order of the Tate-Shafarevich group
  6. J. Gebel, A. Pethő, H. G. Zimmer, Computing integral points on elliptic curves
  7. Sinnou David, Minorations de hauteurs sur les variétés abéliennes
  8. Fabien Pazuki, Remarques sur une conjecture de Lang
  9. Joseph H. Silverman, Lehmer’s conjecture for polynomials satisfying a congruence divisibility condition and an analogue for elliptic curves
  10. Joseph Oesterlé, Nouvelles approches du «théorème» de Fermat

NotesEmbed ?

top

You must be logged in to post comments.