Integer solutions of a sequence of decomposable form inequalities

K. Győry; Min Ru

Acta Arithmetica (1998)

  • Volume: 86, Issue: 3, page 227-237
  • ISSN: 0065-1036

How to cite

top

K. Győry, and Min Ru. "Integer solutions of a sequence of decomposable form inequalities." Acta Arithmetica 86.3 (1998): 227-237. <http://eudml.org/doc/207192>.

@article{K1998,
author = {K. Győry, Min Ru},
journal = {Acta Arithmetica},
keywords = {diophantine inequalities; decomposable forms; approximation to algebraic numbers; resultant inequality},
language = {eng},
number = {3},
pages = {227-237},
title = {Integer solutions of a sequence of decomposable form inequalities},
url = {http://eudml.org/doc/207192},
volume = {86},
year = {1998},
}

TY - JOUR
AU - K. Győry
AU - Min Ru
TI - Integer solutions of a sequence of decomposable form inequalities
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 3
SP - 227
EP - 237
LA - eng
KW - diophantine inequalities; decomposable forms; approximation to algebraic numbers; resultant inequality
UR - http://eudml.org/doc/207192
ER -

References

top
  1. [EGy1] J. H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith. 50 (1988), 357-379. Zbl0595.10013
  2. [EGy2] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 175-202. 
  3. [EGy3] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. Zbl0746.11020
  4. [EGy4] J. H. Evertse and K. Győry, The number of families of solutions of decomposable form equations, Acta Arith. 80 (1997), 367-394. Zbl0886.11015
  5. [Gy1] K. Győry, Some applications of decomposable form equations to resultant equations, Colloq. Math. 65 (1993), 267-275. Zbl0820.11018
  6. [Gy2] K. Győry, On the number of pairs of polynomials with given resultant or given semi-resultant, Acta Sci. Math. (Szeged) 57 (1993), 515-529. Zbl0798.11043
  7. [Gy3] K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith. 67 (1994), 283-296. Zbl0814.11050
  8. [L] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
  9. [RV] M. Ru and P. Vojta, Schmidt's subspace theorem with moving targets, Invent. Math. 127 (1997), 51-65. Zbl1013.11044
  10. [RW] M. Ru and P. M. Wong, Integral points of P n - 2n+1 hyperplanes in general position, Invent. Math. 106 (1991), 195-216. Zbl0758.14007
  11. [Schl] H. P. Schlickewei, Inequalities for decomposable forms, Astérisque 41-42 (1977), 267-271. 
  12. [Sch1] W. M. Schmidt, Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications, Academic Press, New York, 1973, 235-253. 
  13. [Sch2] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. Zbl0421.10019
  14. [W] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., Providence, R.I., 1971, 213-247. Zbl0223.10017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.