Integer solutions of a sequence of decomposable form inequalities
Acta Arithmetica (1998)
- Volume: 86, Issue: 3, page 227-237
- ISSN: 0065-1036
Access Full Article
topHow to cite
topK. Győry, and Min Ru. "Integer solutions of a sequence of decomposable form inequalities." Acta Arithmetica 86.3 (1998): 227-237. <http://eudml.org/doc/207192>.
@article{K1998,
author = {K. Győry, Min Ru},
journal = {Acta Arithmetica},
keywords = {diophantine inequalities; decomposable forms; approximation to algebraic numbers; resultant inequality},
language = {eng},
number = {3},
pages = {227-237},
title = {Integer solutions of a sequence of decomposable form inequalities},
url = {http://eudml.org/doc/207192},
volume = {86},
year = {1998},
}
TY - JOUR
AU - K. Győry
AU - Min Ru
TI - Integer solutions of a sequence of decomposable form inequalities
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 3
SP - 227
EP - 237
LA - eng
KW - diophantine inequalities; decomposable forms; approximation to algebraic numbers; resultant inequality
UR - http://eudml.org/doc/207192
ER -
References
top- [EGy1] J. H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith. 50 (1988), 357-379. Zbl0595.10013
- [EGy2] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 175-202.
- [EGy3] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. Zbl0746.11020
- [EGy4] J. H. Evertse and K. Győry, The number of families of solutions of decomposable form equations, Acta Arith. 80 (1997), 367-394. Zbl0886.11015
- [Gy1] K. Győry, Some applications of decomposable form equations to resultant equations, Colloq. Math. 65 (1993), 267-275. Zbl0820.11018
- [Gy2] K. Győry, On the number of pairs of polynomials with given resultant or given semi-resultant, Acta Sci. Math. (Szeged) 57 (1993), 515-529. Zbl0798.11043
- [Gy3] K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith. 67 (1994), 283-296. Zbl0814.11050
- [L] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
- [RV] M. Ru and P. Vojta, Schmidt's subspace theorem with moving targets, Invent. Math. 127 (1997), 51-65. Zbl1013.11044
- [RW] M. Ru and P. M. Wong, Integral points of - 2n+1 hyperplanes in general position, Invent. Math. 106 (1991), 195-216. Zbl0758.14007
- [Schl] H. P. Schlickewei, Inequalities for decomposable forms, Astérisque 41-42 (1977), 267-271.
- [Sch1] W. M. Schmidt, Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications, Academic Press, New York, 1973, 235-253.
- [Sch2] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. Zbl0421.10019
- [W] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., Providence, R.I., 1971, 213-247. Zbl0223.10017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.