On finite pseudorandom binary sequences III: The Liouville function, I

Julien Cassaigne; Sébastien Ferenczi; Christian Mauduit; Jöel Rivat; András Sárközy

Acta Arithmetica (1999)

  • Volume: 87, Issue: 4, page 367-390
  • ISSN: 0065-1036

How to cite

top

Julien Cassaigne, et al. "On finite pseudorandom binary sequences III: The Liouville function, I." Acta Arithmetica 87.4 (1999): 367-390. <http://eudml.org/doc/207226>.

@article{JulienCassaigne1999,
author = {Julien Cassaigne, Sébastien Ferenczi, Christian Mauduit, Jöel Rivat, András Sárközy},
journal = {Acta Arithmetica},
keywords = {finite pseudorandom binary sequences; Liouville function; correlation measure; complexity of sequence; well-distribution measure; pseudorandom properties of arithmetic sequences},
language = {eng},
number = {4},
pages = {367-390},
title = {On finite pseudorandom binary sequences III: The Liouville function, I},
url = {http://eudml.org/doc/207226},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Julien Cassaigne
AU - Sébastien Ferenczi
AU - Christian Mauduit
AU - Jöel Rivat
AU - András Sárközy
TI - On finite pseudorandom binary sequences III: The Liouville function, I
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 4
SP - 367
EP - 390
LA - eng
KW - finite pseudorandom binary sequences; Liouville function; correlation measure; complexity of sequence; well-distribution measure; pseudorandom properties of arithmetic sequences
UR - http://eudml.org/doc/207226
ER -

References

top
  1. [Ch] S. Chowla, The Riemann Hypothesis and Hilbert's Tenth Problem, Gordon and Breach, New York, 1965. Zbl0136.32702
  2. [Ell1] P. D. T. A. Elliott, Probabilistic Number Theory, Vol. II, Springer, New York, 1980. 
  3. [Ell2] P. D. T. A. Elliott, On the correlation of multiplicative functions, Notas Soc. Mat. Chile 11 (1992), 1-11. 
  4. [Ell3] P. D. T. A. Elliott, On the correlation of multiplicative and the sum of additive arithmetic functions, Mem. Amer. Math. Soc. 538 (1994). 
  5. [GH] S. W. Graham and D. Hensley, Problem E3025, Amer. Math. Monthly 90 (1983), 707. 
  6. [Ha] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hungar. 19 (1968), 365-403. Zbl0165.05804
  7. [HR] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
  8. [HPW] G. Harman, J. Pintz and D. Wolke, A note on the Möbius and the Liouville function, Studia Sci. Math. Hungar. 20 (1985), 295-299. Zbl0544.10041
  9. [Hi1] A. Hildebrand, Multiplicative functions at consecutive integers, Math. Proc. Cambridge Philos. Soc. 100 (1986), 229-236. Zbl0615.10053
  10. [Hi2] A. Hildebrand, On consecutive values of the Liouville function, Enseign. Math. 32 (1986), 219-226. Zbl0615.10054
  11. [Hi3] A. Hildebrand, Math. Reviews, review no. 95d:11099. 
  12. [Li] J.-E. Littlewood, Quelques conséquences de l'hypothèse que la fonction ζ(s) de Riemann n'a pas de zéros dans le demi-plan R(s) > 1/2, C. R. Acad. Sci. Paris 154 (1912), 263-266. Zbl43.0329.02
  13. [MS1] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365-377. Zbl0886.11048
  14. [MS2] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences II: The Champernowne, Rudin-Shapiro and Thue-Morse sequences. A further construction, J. Number Theory, to appear. Zbl0916.11047
  15. [Sa] A. Sárközy, On the number of prime factors of integers of the form a i + b j , Studia Sci. Math. Hungar. 23 (1988), 161-168. 
  16. [Sc] A. Schinzel, Remarks on the paper 'Sur certaines hypothèses concernant les nombres premiers', Acta Arith. 7 (1961/1962), 1-8. 
  17. [ScSi] A. Schinzel et W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208; Corrigendum: Acta Arith. 5 (1959), 259. 
  18. [St1] G. Stepanauskas, The mean values of multiplicative functions, II, Liet. Mat. Rink. 37 (1997), 212-223 (in Russian). 
  19. [St2] G. Stepanauskas, The mean values of multiplicative functions, III, in: Analytic and Probabilistic Methods in Number Theory, New Trends in Probability and Statistics, Vol. 4, A. Laurinčikas et al. (eds.), VSP BV, Utrecht, 1997, 371-387. Zbl0977.11043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.