Sommes sans grand facteur premier

R. de la Bretèche

Acta Arithmetica (1999)

  • Volume: 88, Issue: 1, page 1-14
  • ISSN: 0065-1036

How to cite

top

R. de la Bretèche. "Sommes sans grand facteur premier." Acta Arithmetica 88.1 (1999): 1-14. <http://eudml.org/doc/207229>.

@article{R1999,
author = {R. de la Bretèche},
journal = {Acta Arithmetica},
keywords = {prime factors; exponential sums; Dickman's function},
language = {fre},
number = {1},
pages = {1-14},
title = {Sommes sans grand facteur premier},
url = {http://eudml.org/doc/207229},
volume = {88},
year = {1999},
}

TY - JOUR
AU - R. de la Bretèche
TI - Sommes sans grand facteur premier
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 1
SP - 1
EP - 14
LA - fre
KW - prime factors; exponential sums; Dickman's function
UR - http://eudml.org/doc/207229
ER -

References

top
  1. [1] A. Balog and A. Sárközy, On sums of sequences of integers, I, Acta Arith. 44 (1984), 73-86. Zbl0546.10050
  2. [2] A. Balog and A. Sárközy,On sums of sequences of integers, II, Acta Math. Hungar. 44 (1984), 169-179. Zbl0559.10034
  3. [3] A. Balog and A. Sárközy,On sums of integers having small prime factors, I, Studia Sci. Math. Hungar. 19 (1984), 35-47. Zbl0569.10025
  4. [4] R. de la Bretèche, Sommes d'exponentielles et entiers sans grand facteur pre- mier, Proc. London Math. Soc. (3) 77 (1998), 39-78. 
  5. [5] Y. Dupain, R. R. Hall et G. Tenenbaum, Sur l'équirépartition modulo 1 de certaines fonctions de diviseurs, J. London Math. Soc. (2) 26 (1982), 397-411. Zbl0504.10029
  6. [6] P. D. T. A. Elliott and A. Sárközy, The distribution of the number of prime divisors of sums a+b, J. Number Theory 29 (1988), 94-99. Zbl0646.10042
  7. [7] P. Erdős, H. Maier and A. Sárközy, On the distribution of the number of prime factors of sums a+b, Trans. Amer. Math. Soc. 302 (1987), 269-280. Zbl0617.10038
  8. [8] E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. (3) 63 (1991), 449-494. Zbl0745.11042
  9. [9] A. Hildebrand, On the number of the positive integers ≤ x and free of prime factors > y, J. Number Theory 22 (1986), 289-307. Zbl0575.10038
  10. [10] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), 411-484. Zbl0797.11070
  11. [11] E. Saias, Sur le nombre d'entiers sans grand facteur premier, J. Number Theory 32 (1989), 78-99. Zbl0676.10028
  12. [12] A. Sárközy and C. L. Stewart, On divisors of sums of integers, II, J. Reine Angew. Math. 365 (1986), 171-191. Zbl0578.10045
  13. [13] A. Sárközy and C. L. Stewart,On the average value of the numbers of divisors of sums a+b, Illinois J. Math. 38 (1984), 1-18. Zbl0793.11025
  14. [14] G. Tenenbaum, Facteur premier de sommes d'entiers, Proc. Amer. Math. Soc. 106 (1989), 287-296. Zbl0678.10030
  15. [15] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2ème éd., Cours Spécialisé, no. 1, Soc. Math. France, 1995. 
  16. [16] I. M. Vinogradov, The Method of Trigonometrical Sums in Theory of Numbers, Interscience, New York, 1954. Zbl0055.27504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.