Smooth solutions to the equation: the Conjecture
Jeffrey C. Lagarias[1]; Kannan Soundararajan[2]
- [1] University of Michigan Department of Mathematics 530 Church Street Ann Arbor, MI 48109-1043, USA
- [2] Department of Mathematics Stanford University Department of Mathematics Stanford, CA 94305-2025,USA
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 1, page 209-234
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLagarias, Jeffrey C., and Soundararajan, Kannan. "Smooth solutions to the $abc$ equation: the $xyz$ Conjecture." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 209-234. <http://eudml.org/doc/219669>.
@article{Lagarias2011,
abstract = {This paper studies integer solutions to the $\{abc\}$ equation $A+B+C=0$ in which none of $A, B, C$ have a large prime factor. We set $H(A, B,C) = \max (|A|, |B|, |C|)$, and consider primitive solutions ($\{\rm gcd\}(A, B, C)=1$) having no prime factor larger than $(\log H(A, B,C))^\{\kappa \}$, for a given finite $\kappa $. We show that the $\{abc\}$ Conjecture implies that for any fixed $\kappa < 1$ the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed $\kappa >8$ the $\{abc\}$ equation has infinitely many primitive solutions. We outline a proof of the latter result.},
affiliation = {University of Michigan Department of Mathematics 530 Church Street Ann Arbor, MI 48109-1043, USA; Department of Mathematics Stanford University Department of Mathematics Stanford, CA 94305-2025,USA},
author = {Lagarias, Jeffrey C., Soundararajan, Kannan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = { conjecture},
language = {eng},
month = {3},
number = {1},
pages = {209-234},
publisher = {Société Arithmétique de Bordeaux},
title = {Smooth solutions to the $abc$ equation: the $xyz$ Conjecture},
url = {http://eudml.org/doc/219669},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Lagarias, Jeffrey C.
AU - Soundararajan, Kannan
TI - Smooth solutions to the $abc$ equation: the $xyz$ Conjecture
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 209
EP - 234
AB - This paper studies integer solutions to the ${abc}$ equation $A+B+C=0$ in which none of $A, B, C$ have a large prime factor. We set $H(A, B,C) = \max (|A|, |B|, |C|)$, and consider primitive solutions (${\rm gcd}(A, B, C)=1$) having no prime factor larger than $(\log H(A, B,C))^{\kappa }$, for a given finite $\kappa $. We show that the ${abc}$ Conjecture implies that for any fixed $\kappa < 1$ the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed $\kappa >8$ the ${abc}$ equation has infinitely many primitive solutions. We outline a proof of the latter result.
LA - eng
KW - conjecture
UR - http://eudml.org/doc/219669
ER -
References
top- A. Balog and A. Sárközy, On sums of integers having small prime factors. I. Stud. Sci. Math. Hungar. 19 (1984), 35–47. Zbl0569.10025MR787784
- A. Balog and A. Sárközy , On sums of integers having small prime factors. II. Stud. Sci. Math. Hungar. 19 (1984), 81–88. Zbl0569.10026MR787784
- E. Bombieri and W. Gubler, Heights in Diophantine Geometry. Cambridge University Press, Cambridge, 2006. Zbl1130.11034MR2216774
- R. de la Bretèche, Sommes d’exponentielles et entiers sans grand facteur premier. Proc. London Math. Soc. 77 (1998), 39–78. Zbl0893.11039MR1625487
- R. de la Bretèche, Sommes sans grand facteur premier. Acta Arith. 88 (1999), 1–14. Zbl0935.11031MR1698349
- R. de la Bretèche and A. Granville, Densité des friables. Preprint (2009).
- R. de la Bretèche and G. Tenenbaum, Séries trigonométriques à coefficients arithmétiques. J. Anal. Math. 92 (2004), 1–79. Zbl1171.11319MR2072741
- R. de la Bretèche and G. Tenenbaum, Propriétés statistiques des entiers friables, Ramanujan J. 9 (2005), 139–202. Zbl1152.11040MR2166385
- R. de la Bretèche and G. Tenenbaum, Sommes d’exponentielles friables d’arguments rationnels, Funct. Approx. Comment. Math. 37 (2007), 31–38. Zbl1230.11098MR2357307
- H. Davenport, Multiplicative Number Theory. Second Edition (Revised by H. L. Montgomery). Springer-Verlag, New York, 1980. Zbl0453.10002MR606931
- P. Erdős, C. Stewart and R. Tijdeman, Some diophantine equations with many solutions. Compositio Math. 66 (1988), 37–56. Zbl0639.10014MR937987
- A. Granville and H. M. Stark, implies no “Siegel zeros” for -functions of characters with negative discriminant. Invent. Math. 139 (2000), 509–523. Zbl0967.11033MR1738058
- B. Gross and D. B. Zagier, On singular moduli. J. reine Angew. Math. 355 (1985), 191–220. Zbl0545.10015MR772491
- K. Győry, On the Conjecture in algebraic number fields. Acta Arith. 133, (2008), no. 3, 283–295. Zbl1188.11011MR2434605
- K. Győry and K. Yu, Bounds for the solutions of -unit equations and decomposable form equations. Acta Arith. 123 (2006), no. 1, 9–41. Zbl1163.11026MR2232500
- G. H. Hardy and J. E. Littlewood, Some problems in partitio numerorum III. On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70. Zbl48.0143.04MR1555183
- G.H. Hardy and J. E. Littlewood, Some problems in partitio numerorum V. A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc., Ser. 2, 22 (1924), 46–56. Zbl49.0127.03
- A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis. Mathematika 31 (1984), 258–271. Zbl0544.10042MR804201
- A. Hildebrand, On the local behavior of . Trans. Amer. Math. Soc. 297 (1986), 729–751. Zbl0611.10028MR854096
- A. Hildebrand and G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290. Zbl0601.10028MR837811
- A. Hildebrand and G. Tenebaum, Integers without large prime factors. J. Theor. Nombres Bordeaux 5 (1993), 411–484. Zbl0797.11070MR1265913
- S. Konyagin and K. Soundararajan, Two -unit equations with many solutions. J. Number Theory 124 (2007), 193–199. Zbl1131.11022MR2321000
- J. C. Lagarias and K. Soundararajan, Counting smooth solutions to the equation . Proc. London Math. Soc., to appear. Zbl1270.11031
- D. W. Masser, On and discriminants. Proc. Amer. Math. Soc. 130 (2002), 3141–3150. Zbl1030.11011MR1912990
- J. Oesterlé, Nouvelles approches du “théorème” de Fermat. Sém. Bourbaki, Exp. No. 694, Astérisque No. 161-162 (1988), 165–186 (1989). Zbl0668.10024MR992208
- B. Poonen, E. F. Schaefer and M. Stoll, Twists of and primitive solutions to . Duke Math. J. 137 (2007), 103–158. Zbl1124.11019MR2309145
- C. L. Stewart and Kunrui Yu, On the abc Conjecture II. Duke Math. J. 108 (2001), 169–181. Zbl1036.11032MR1831823
- C. L. Stewart and R. Tijdeman, On the Oesterlé-Masser Conjecture. Monatshefte Math. 102 (1986), 251–257. Zbl0597.10042MR863221
- G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge Univ. Press, Cambridge, 1995. Zbl0831.11001MR1342300
- R. C. Vaughan, The Hardy-Littlewood Method, Second Edition. Cambridge Tracts in Mathematics 125, Cambridge Univ. Press, 1997. Zbl0868.11046MR1435742
- B. M. M. de Weger, Solving exponential Diophantine equations using lattice basis reduction algorithms. J. Number Theory 26 (1987), no. 3, 325–367. Zbl0625.10013MR901244
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.