Smooth solutions to the a b c equation: the x y z Conjecture

Jeffrey C. Lagarias[1]; Kannan Soundararajan[2]

  • [1] University of Michigan Department of Mathematics 530 Church Street Ann Arbor, MI 48109-1043, USA
  • [2] Department of Mathematics Stanford University Department of Mathematics Stanford, CA 94305-2025,USA

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 209-234
  • ISSN: 1246-7405

Abstract

top
This paper studies integer solutions to the a b c equation A + B + C = 0 in which none of A , B , C have a large prime factor. We set H ( A , B , C ) = max ( | A | , | B | , | C | ) , and consider primitive solutions ( gcd ( A , B , C ) = 1 ) having no prime factor larger than ( log H ( A , B , C ) ) κ , for a given finite κ . We show that the a b c Conjecture implies that for any fixed κ < 1 the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed κ > 8 the a b c equation has infinitely many primitive solutions. We outline a proof of the latter result.

How to cite

top

Lagarias, Jeffrey C., and Soundararajan, Kannan. "Smooth solutions to the $abc$ equation: the $xyz$ Conjecture." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 209-234. <http://eudml.org/doc/219669>.

@article{Lagarias2011,
abstract = {This paper studies integer solutions to the $\{abc\}$ equation $A+B+C=0$ in which none of $A, B, C$ have a large prime factor. We set $H(A, B,C) = \max (|A|, |B|, |C|)$, and consider primitive solutions ($\{\rm gcd\}(A, B, C)=1$) having no prime factor larger than $(\log H(A, B,C))^\{\kappa \}$, for a given finite $\kappa $. We show that the $\{abc\}$ Conjecture implies that for any fixed $\kappa &lt; 1$ the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed $\kappa &gt;8$ the $\{abc\}$ equation has infinitely many primitive solutions. We outline a proof of the latter result.},
affiliation = {University of Michigan Department of Mathematics 530 Church Street Ann Arbor, MI 48109-1043, USA; Department of Mathematics Stanford University Department of Mathematics Stanford, CA 94305-2025,USA},
author = {Lagarias, Jeffrey C., Soundararajan, Kannan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = { conjecture},
language = {eng},
month = {3},
number = {1},
pages = {209-234},
publisher = {Société Arithmétique de Bordeaux},
title = {Smooth solutions to the $abc$ equation: the $xyz$ Conjecture},
url = {http://eudml.org/doc/219669},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Lagarias, Jeffrey C.
AU - Soundararajan, Kannan
TI - Smooth solutions to the $abc$ equation: the $xyz$ Conjecture
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 209
EP - 234
AB - This paper studies integer solutions to the ${abc}$ equation $A+B+C=0$ in which none of $A, B, C$ have a large prime factor. We set $H(A, B,C) = \max (|A|, |B|, |C|)$, and consider primitive solutions (${\rm gcd}(A, B, C)=1$) having no prime factor larger than $(\log H(A, B,C))^{\kappa }$, for a given finite $\kappa $. We show that the ${abc}$ Conjecture implies that for any fixed $\kappa &lt; 1$ the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed $\kappa &gt;8$ the ${abc}$ equation has infinitely many primitive solutions. We outline a proof of the latter result.
LA - eng
KW - conjecture
UR - http://eudml.org/doc/219669
ER -

References

top
  1. A. Balog and A. Sárközy, On sums of integers having small prime factors. I. Stud. Sci. Math. Hungar. 19 (1984), 35–47. Zbl0569.10025MR787784
  2. A. Balog and A. Sárközy , On sums of integers having small prime factors. II. Stud. Sci. Math. Hungar. 19 (1984), 81–88. Zbl0569.10026MR787784
  3. E. Bombieri and W. Gubler, Heights in Diophantine Geometry. Cambridge University Press, Cambridge, 2006. Zbl1130.11034MR2216774
  4. R. de la Bretèche, Sommes d’exponentielles et entiers sans grand facteur premier. Proc. London Math. Soc. 77 (1998), 39–78. Zbl0893.11039MR1625487
  5. R. de la Bretèche, Sommes sans grand facteur premier. Acta Arith. 88 (1999), 1–14. Zbl0935.11031MR1698349
  6. R. de la Bretèche and A. Granville, Densité des friables. Preprint (2009). 
  7. R. de la Bretèche and G. Tenenbaum, Séries trigonométriques à coefficients arithmétiques. J. Anal. Math. 92 (2004), 1–79. Zbl1171.11319MR2072741
  8. R. de la Bretèche and G. Tenenbaum, Propriétés statistiques des entiers friables, Ramanujan J. 9 (2005), 139–202. Zbl1152.11040MR2166385
  9. R. de la Bretèche and G. Tenenbaum, Sommes d’exponentielles friables d’arguments rationnels, Funct. Approx. Comment. Math. 37 (2007), 31–38. Zbl1230.11098MR2357307
  10. H. Davenport, Multiplicative Number Theory. Second Edition (Revised by H. L. Montgomery). Springer-Verlag, New York, 1980. Zbl0453.10002MR606931
  11. P. Erdős, C. Stewart and R. Tijdeman, Some diophantine equations with many solutions. Compositio Math. 66 (1988), 37–56. Zbl0639.10014MR937987
  12. A. Granville and H. M. Stark, a b c implies no “Siegel zeros” for L -functions of characters with negative discriminant. Invent. Math. 139 (2000), 509–523. Zbl0967.11033MR1738058
  13. B. Gross and D. B. Zagier, On singular moduli. J. reine Angew. Math. 355 (1985), 191–220. Zbl0545.10015MR772491
  14. K. Győry, On the a b c Conjecture in algebraic number fields. Acta Arith. 133, (2008), no. 3, 283–295. Zbl1188.11011MR2434605
  15. K. Győry and K. Yu, Bounds for the solutions of S -unit equations and decomposable form equations. Acta Arith. 123 (2006), no. 1, 9–41. Zbl1163.11026MR2232500
  16. G. H. Hardy and J. E. Littlewood, Some problems in partitio numerorum III. On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70. Zbl48.0143.04MR1555183
  17. G.H. Hardy and J. E. Littlewood, Some problems in partitio numerorum V. A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc., Ser. 2, 22 (1924), 46–56. Zbl49.0127.03
  18. A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis. Mathematika 31 (1984), 258–271. Zbl0544.10042MR804201
  19. A. Hildebrand, On the local behavior of Ψ ( x , y ) . Trans. Amer. Math. Soc. 297 (1986), 729–751. Zbl0611.10028MR854096
  20. A. Hildebrand and G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290. Zbl0601.10028MR837811
  21. A. Hildebrand and G. Tenebaum, Integers without large prime factors. J. Theor. Nombres Bordeaux 5 (1993), 411–484. Zbl0797.11070MR1265913
  22. S. Konyagin and K. Soundararajan, Two S -unit equations with many solutions. J. Number Theory 124 (2007), 193–199. Zbl1131.11022MR2321000
  23. J. C. Lagarias and K. Soundararajan, Counting smooth solutions to the equation A + B = C . Proc. London Math. Soc., to appear. Zbl1270.11031
  24. D. W. Masser, On a b c and discriminants. Proc. Amer. Math. Soc. 130 (2002), 3141–3150. Zbl1030.11011MR1912990
  25. J. Oesterlé, Nouvelles approches du “théorème” de Fermat. Sém. Bourbaki, Exp. No. 694, Astérisque No. 161-162 (1988), 165–186 (1989). Zbl0668.10024MR992208
  26. B. Poonen, E. F. Schaefer and M. Stoll, Twists of X ( 7 ) and primitive solutions to x 2 + y 3 = z 7 . Duke Math. J. 137 (2007), 103–158. Zbl1124.11019MR2309145
  27. C. L. Stewart and Kunrui Yu, On the abc Conjecture II. Duke Math. J. 108 (2001), 169–181. Zbl1036.11032MR1831823
  28. C. L. Stewart and R. Tijdeman, On the Oesterlé-Masser Conjecture. Monatshefte Math. 102 (1986), 251–257. Zbl0597.10042MR863221
  29. G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge Univ. Press, Cambridge, 1995. Zbl0831.11001MR1342300
  30. R. C. Vaughan, The Hardy-Littlewood Method, Second Edition. Cambridge Tracts in Mathematics 125, Cambridge Univ. Press, 1997. Zbl0868.11046MR1435742
  31. B. M. M. de Weger, Solving exponential Diophantine equations using lattice basis reduction algorithms. J. Number Theory 26 (1987), no. 3, 325–367. Zbl0625.10013MR901244

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.