Integers without large prime factors

Adolf Hildebrand; Gerald Tenenbaum

Journal de théorie des nombres de Bordeaux (1993)

  • Volume: 5, Issue: 2, page 411-484
  • ISSN: 1246-7405

How to cite

top

Hildebrand, Adolf, and Tenenbaum, Gerald. "Integers without large prime factors." Journal de théorie des nombres de Bordeaux 5.2 (1993): 411-484. <http://eudml.org/doc/93590>.

@article{Hildebrand1993,
author = {Hildebrand, Adolf, Tenenbaum, Gerald},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {smooth numbers; asymptotic estimates; distribution of integers without large prime factors; arithmetic progressions; short intervals; survey},
language = {eng},
number = {2},
pages = {411-484},
publisher = {Université Bordeaux I},
title = {Integers without large prime factors},
url = {http://eudml.org/doc/93590},
volume = {5},
year = {1993},
}

TY - JOUR
AU - Hildebrand, Adolf
AU - Tenenbaum, Gerald
TI - Integers without large prime factors
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 2
SP - 411
EP - 484
LA - eng
KW - smooth numbers; asymptotic estimates; distribution of integers without large prime factors; arithmetic progressions; short intervals; survey
UR - http://eudml.org/doc/93590
ER -

References

top
  1. M. Abramowitz & I. Stegun, (1964) Handbook of Mathematical Functions, National Bureau of Standards, Wash ington1964; Tenth Printing, Dover, New York, 1972. 
  2. W.R. Alford, A. Granville, & C. Pomerance, (1993) There are infinitely many Carmichael numbers, preprint. Zbl0816.11005MR1283874
  3. K. Alladi, (1982a) Asymptotic estimates of sums involving the Moebius function. II, Trans. Amer. Math. Soc. 272, 87-105. Zbl0499.10050MR656482
  4. (1982b) The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math.335, 180-196. Zbl0483.10050MR667466
  5. (1987) An Erdös-Kac theorem for integers without large prime factors, Acta Arith.49, 81-105. Zbl0627.10030MR913766
  6. K. Alladi and P. Erdös, (1977) On an additive arithmetic function, Pacific J. Math.71, 275-294. Zbl0359.10038MR447086
  7. (1979) On the asymptotic behavior of large prime factors of integers, Pacific J. Math.82, 295-315. Zbl0419.10042MR551689
  8. A. Balog, (1984) p + a without large prime factors, in: Séminaire de Théorie des Nombres, Bordeaux 1983-84, Univ. Bordeaux, Talence, Exp. No. 31, 5 pp. Zbl0588.10052MR784077
  9. (1987) On the distribution of integers having no large prime factor, in: Journées Arithmétiques, Besançon 1985, Astérisque147/148, pp. 27-31. Zbl0617.10031MR891417
  10. (1989) On additive representations of integers, Acta Math. Hungar.54, 297-301. Zbl0689.10050MR1029092
  11. A. Balog, P. Erdös, & G. Tenenbaum, (1990) On arithmetic functions involving consecutive divisors, in: Analytic Number Theory (B. C. Berndt et al., eds.), Proc. Conf. in Honor of Paul T. Bateman, Birkhäuser, Progress in Math.85, 77-90. Zbl0718.11041MR1084174
  12. A. Balog & C. Pomerance, (1992) The distribution of smooth numbers in arithmetic progressions, Amer. Math. Soc.115, 33-43. Zbl0752.11036MR1089401
  13. A. Balog & A. Sárközy, (1984a) On sums of integers having small prime factors. I, Stud. Sci. Math. Hungar. 19, 35-47. Zbl0569.10025MR787784
  14. (1984b) On sums of integers having small prime factors. II, Stud. Sci. Math. Hungar. 19, 81-88. Zbl0569.10026
  15. F. Beukers, (1975) The lattice-points of n-dimensional tedrahedra, Indag. Math.37, 365-372. Zbl0312.10037MR384732
  16. P. Billingsley, (1972) On the distribution of large prime divisors, Period. Math. Hungar.2, 283-289. Zbl0242.10033MR335462
  17. A.E. Brouwer, (1974) Two number theoretic sums, Math. CentrumAmsterdam, Report ZW 19/74. Zbl0274.10042MR345918
  18. N. G. de Bruijn, (1951a) The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15, 25-32. Zbl0043.06502MR43838
  19. (1951b) On the number of positive integers ≤ x and free of prime factors &gt; y, Nederl. Akad. Wetensch. Proc. Ser. A54, 50-60. Zbl0042.04204
  20. (1966) On the number of positive integers ≤ x and free of prime factors &gt; y, II, Nederl. Akad. Wetensch. Proc. Ser. A69, 239-247. Zbl0139.27203
  21. N. G. de Bruijn & J. H. van Lint, (1964) Incomplete sums of multiplicative functions I, II, Nederl. Akad. Wetensch. Proc. Ser. A67, 339-347; 348-359. Zbl0131.28703MR174530
  22. A.A. Buchstab, (1949) On those numbers in an arithmetic progression all prime factors of which are small in magnitude (Russian), Dokl. Akad. Na u k SSSR67, 5-8. MR30995
  23. E.R. Canfield, (1982) On the asymptotic behavior of the Dickman-de Bruijn function, Congr. Numer.38, 139-148. Zbl0511.10005MR725875
  24. E R. Canfield, P. Erdös, & C. Pomerance, (1983) On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory17, 1-28. Zbl0513.10043MR712964
  25. M. Car, (1987) Théorèmes de densité dans Fq[X], Acta Arith.48, 145-165. Zbl0575.12017MR895437
  26. S.D. Chowla and T. Vijayaraghavan, (1947) On the largest prime divisors of numbers, J. Indian Math. Soc. (N. S.) 11, 31-37. Zbl0039.03702MR23269
  27. J.-M. De Koninck & D. Hensley, (1978) Sums taken over n ≤ x with prime factors ≤ y of zΩ(n), and their derivatives with respect to z, J. Indian Math. Soc. (N. S.) 42, 353-365. Zbl0473.10028
  28. J.-M. De Koninck & A. Ivić, (1984a) Sommes de réciproques de grandes fonctions additives, Publ. Inst. Math. (Beograd) (N. S.) 35, 41-48. Zbl0552.10026MR779618
  29. (1984b) The distribution of the average prime divisor of an integer, Arch. Math.43, 37-43. Zbl0519.10027
  30. J.-M. De Koninck & A. Mercier, (1989) Les fonctions arithmetiques et le plus grand facteur premier, Acta Arith.52, 25-48. Zbl0687.10030MR1005154
  31. J.-M. Deshouillers & H. Iwaniec, (1982) On the greatest prime factor of n2+1, Ann. Inst. Fourier (Grenoble) 32, 1-11. Zbl0489.10038MR694125
  32. K. Dickman, (1930) On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys.22, 1-14. Zbl56.0178.04JFM56.0178.04
  33. R. Eggleton & J.L. Selfridge, (1976) Consecutive integers with no large prime factors, J. Austral. Math. Soc. Ser.A22, 1-11. Zbl0343.10024MR439778
  34. V. Ennola, (1969) On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. AI440, 16 pp. Zbl0174.33903MR244175
  35. P. Erdös, (1935) On the normal number of prime factors of p -1 and some other related problems concerning Euler's Φ-function, Quart. J. Math. (Oxford) 6, 205-213. Zbl0012.14905JFM61.0129.05
  36. (1952) On the greatest prime factor of Π f (k), J. London Math. Soc.27, 379-384. Zbl0046.04102
  37. (1955) On consecutive integers, Nieuw Arch. Wisk. (3) 3, 124-128. Zbl0065.27605MR73628
  38. P. Erdös & A. Ivić, (1980) Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Stud. Sci. Math. Hungar.15, 183-199. Zbl0455.10031MR681439
  39. P. Erdös, A. Ivić, and C. Pomerance, (1986) On sums involving reciprocals of the largest prime factor of an integer, Glas. Mat. III. Ser.21 (41), 283-300. Zbl0615.10055MR896810
  40. P. Erdös & A. Schinzel, (1990) On the greatest prime factor of Πx k=1 f(k), Acta Arith.55, 191-200. Zbl0715.11050
  41. A.S. Fainleib, (1967) On the estimation from below of the number of numbers with small prime factors (Russian), Dokl. Akad. Nauk USSR7, 3-5. Zbl0216.31101MR306138
  42. E. Fouvry & F. Grupp, (1986) On the switching principle in sieve theory, J. Reine Angew. Math.370, 101-126. Zbl0588.10051MR852513
  43. E. Fouvry & G. Tenenbaum, (1990) Diviseurs de Titchmarsh des entiers sans grand facteur premier, in: Analytic Number Theory (E. Fouvry, ed.), Tokyo 1988, Lecture Notes in Math.1434, Springer, Berlin, pp. 86-102. Zbl0708.11043MR1071746
  44. (1991) Entiers sans grand facteur premier en progressions arithmétiques, London Math. Soc. (3) 63, 449-494. Zbl0745.11042MR1127146
  45. J.B. Friedlander, (1972) On the number of ideals free of large prime divisors, J. Reine Angew. Math.255, 1-7. Zbl0243.10034MR299579
  46. (1973a) On the least kth power residue in an algebraic number field, London Math. Soc. (3) 26, 19-34. Zbl0253.12002
  47. (1973b) Integers without large prime factors, Nederl. Akad. Wetensch. Proc. Ser.A76, 443-451. Zbl0267.10057MR340201
  48. (1976) Integers free from large and small primes, Proc. London Math. Soc. (3) 33, 565-576. Zbl0344.10021MR417078
  49. (1981) Integers without large prime factors. II, Acta Arith.39, 53-57. Zbl0485.10033MR638742
  50. (1984a) Large prime factors in small intervals, in: Topics in classical number theory, Colloqu. Math. Soc. Janos Bolyai34, North-Holland, Amsterdam, 511-518. Zbl0546.10035MR781152
  51. (1984b) Integers without large prime factors. III, Arch. Math.43, 32-36. Zbl0521.10036MR758337
  52. (1985) Notes on Chebyshev's method, Rocky Mountain J. Math.15, 377-383. Zbl0585.10031MR823250
  53. (1989) Shifted primes without large prime factors, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 393-401. MR1123085
  54. J.B. Friedlander & J.C. Lagarias, (1987) On the distribution in short intervals of integers having no large prime factor, J. Number Theory25, 249-273. Zbl0606.10033MR880461
  55. J. Galambos, (1976) The sequence of prime divisors of integers, Acta Arith.31, 213-218. Zbl0303.10039MR439795
  56. J.R. Gillet, (1970) On the largest prime divisor of ideals in fields of degree n, Duke Math. J.37, 589-600. Zbl0211.07804MR268153
  57. D.A. Goldston & K.S. McCurley, (1988) Sieving the positive integers by large primes, J. Number Theory28, 94-115. Zbl0639.10028MR925610
  58. A. Granville, (1989) On positive integers ≤ x with prime factors ≤ tlog x, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 403-422. Zbl0686.10031
  59. (1991a) The lattice points of an n-dimensional tedrahedron, Aequationes Math. 41, 234-241. Zbl0733.11034MR1102312
  60. (1991b) On pairs of coprime integers with no large prime factors, Expos. Math.9, 335-350. Zbl0745.11043MR1137813
  61. (1993a) Integers, without large prime factors, in arithmetic progressions. I, Acta Math.170, 255-273. Zbl0784.11045MR1226529
  62. (1993b) Integers, without large prime factors, in arithmetic progressions. II, preprint. Zbl0792.11036
  63. J.L. Hafner, (1993) On smooth numbers in short intervals under the Riemann Hypothesis, preprint. 
  64. H. Halberstarn & H.-E. Richert, (1971) Mean value theorems for a class of arithmetic functions, Acta Arith.18, 243-256; Add. & Corr., ibid. 28, 107-110. Zbl0217.32002MR289435
  65. (1974) Sieve Methods, Academic Press, London, New York, San Francisco. Zbl0298.10026MR424730
  66. H. Halberstam & K.F. Roth, (1951) On the gaps between consecutive k-free integers, J. London Math. Soc.26, 268-273. Zbl0043.04901MR43120
  67. G. Harman, (1991) Short intervals containing numbers without large prime factors, Math. Proc. Cambridge Philos. Soc.109, 1-5. Zbl0724.11041MR1075116
  68. D.G. Hazlewood, (1973) On integers all of whose prime factors are small, Bull. London Math. Soc.5, 159-163. Zbl0276.10022MR337846
  69. (1975a) On k-free integers with small prime factors, Proc. Amer. Math. Soc.52, 40-44. Zbl0279.10033MR374056
  70. (1975b) Sums over positive integers with few prime factors, J. Number Theory7, 189-207. Zbl0302.10037MR371835
  71. (1975c) On sums over Gaussian integers, Trans. Amer. Math. Soc.209, 295-310. Zbl0308.10038MR371842
  72. (1977) On ideals having only small prime factors, Rocky Mountain J. Math.7, 753-768. Zbl0373.12004MR444591
  73. D.R. Heath-Brown, (1987) Consecutive almost-primes, J. Indian Math. Soc. (N. S.) 52, 39-49. Zbl0668.10051MR989229
  74. D. Hensley, (1985) The number of positive integers ≤ x and free of prime divisors &gt; y, J. Number Theory21, 286-298. Zbl0575.10037
  75. (1986) A property of the counting function of integers with no large prime factors, J. Number Theory22, 46-74. Zbl0575.10039MR821136
  76. (1987) The distribution of Ω(n) among numbers with no large prime factors, in: Analytic Number Theory and Diophantine Problems (A. Adolphson et al., eds.), Proc. of a Conf. at Oklahoma State University 1984, Birkhauser, Progress in Math.70, 247-281. Zbl0626.10037
  77. A. Hildebrand, (1984a) Integers free of large prime factors and the Riemann Hypothesis, Mathematika31, 258-271. Zbl0544.10042MR804201
  78. (1984b) On a problem of Erdös and Alladi, Monatsh. Math.97, 119-124. Zbl0531.10046MR747079
  79. (1985a) Integers free of large prime factors in short intervals, Quart. J. Math. (Oxford) (2) 36, 57-69. Zbl0562.10018
  80. (1985b) On a conjecture of A. Balog, Proc. Amer. Math. Soc.95, 517-523. Zbl0597.10056
  81. (1986a) On the number of positive integers &lt; x and free of prime factors &gt; y, J. Number Theory22, 289-307. Zbl0575.10038MR831874
  82. (1986b) On the local behavior of Ψ(x, y), Trans. Amer. Math. Soc.297, 729-751. Zbl0611.10028
  83. (1987) On the number of prime factors of integers without large prime divisors, J. Number Theory25, 81-106. Zbl0621.10028MR871170
  84. (1989) Integer sets containing strings of consecutive integers, Mathematika36, 60-70. Zbl0685.10036MR1014201
  85. A. Hildebrand & G. Tenenbaum, (1986) On integers free of large prime factors, Trans. Amer. Math. Soc.296, 265-290. Zbl0601.10028MR837811
  86. (1993) On a class of difference differential equations arising in number theory, J. d'Analyse Math.61, 145-179. Zbl0797.11072MR1253441
  87. N.A. Hmyrova, (1964) On polynomials with small prime divisors (Russian), Dokl. Akad. Nauk SSSR155, 1268-1271. Zbl0127.27005MR160764
  88. (1966) On polynomials with small prime divisors. II (Russian), Izv. Akad. Nauk SSSR Ser. Mat.30, 1367-1372. MR207660
  89. C. Hooley, (1967) On the greatest prime factor of a quadratic polynomial, Acta Math.117, 2-16. Zbl0146.05704MR204383
  90. (1978) On the greatest prime factor of a cubic polynomial, J. Reine Angew. Math. 303/304, 21-50. Zbl0391.10028MR514671
  91. A. Ivić, (1981) Sum of reciprocals of the largest prime factor of an integer, Arch. Math.36, 57-61. Zbl0436.10019MR612237
  92. (1985a) The Riemann zeta-function, Wiley, New York. Zbl0556.10026
  93. (1985b) On squarefree numbers with restricted prime factors, Stud. Sci. Math. Hungar.20, 183-187. MR886019
  94. (1987) On some estimates involving the number of prime divisors of an integer, Acta Arith.49, 21-33. Zbl0573.10038MR913761
  95. B. Hornfeck, (1959) Zur Verteilung gewisser Primzahlprodukte, Math. Ann.139, 14-30. Zbl0092.04803MR114796
  96. A. Ivić and C. Pomerance, (1984) Estimates for certain sums involving the largest prime factor of an integer, in: Topics in classical number theory, Colloq. Budapest1981, Colloq. Math. Soc. Janos Bolyai34, pp. 769-789. Zbl0546.10037MR781162
  97. A. Ivić and G. Tenenbaum, (1986) Local densities over integers free of large prime factors, Quart. J. Math. (Oxford) (2) 37, 401-417. Zbl0604.10024MR868616
  98. J.H. Jordan, (1965) The divisibility of Gaussian integers by large Gaussian primes, Duke Math. J.32, 503-510. Zbl0156.04904MR184921
  99. M. Jutila, (1974) On numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 38, 125-130. Zbl0335.10045MR399013
  100. D.E. Knuth & L. Trabb Pardo, (1976) Analysis of a simple factorization algorithm, Theoret. Comput. Sci.3, 321-348. Zbl0362.10006MR498355
  101. U. Krause, (1990) Abschätzungen für die Funktion ΨK (x,y) in algebraischen Zahlkörpern, Manuscripta Math.69, 319-331. Zbl0759.11028
  102. M. Langevin, (1975) Plus grand facteur premier d'entiers voisins, C. R. Acad. Sci. Paris Sér. A-B281, A491-A493. Zbl0311.10044MR396442
  103. D.H. Lehmer & E. Lehmer, (1941) On the first case of Fermat's last theorem, Bull. Amer. Math. Soc.47, 139-142. Zbl0025.25104MR3657JFM67.0122.05
  104. H.W. Lenstra (1987) Factoring integers with elliptic curves, Ann. Alath.126, 649-673. Zbl0629.10006MR916721
  105. B.V. Levin & U. Chariev, (1986) Sums of multiplicative functions with respect to numbers with prime divisors from given intervals (Russian), Dokl. Akad. Nauk. Tadzh. SSSR29, 383-387. Zbl0621.10033MR887784
  106. B.V. Levin & A.S. Fainleib, (1967) Application of some integral equations to problems in number theory, Russian Math. Surveys22, 119-204. Zbl0204.06502MR229600
  107. J. H. van Lint & H.-E. Richert, (1964) Über die Surmme Σn≤x,P(n)≤ y μ2(n)/ϕ(n), Nederl. Akad. Wetensch. Proc. Ser.A67, 582-587. Zbl0318.10032
  108. S.P. Lloyd, (1984) Ordered prime divisors of a random integer, Ann. Probability12, 1205-1212. Zbl0551.10042MR757777
  109. R. Lovorn, (1992) Rigorous, subexponential algorithms for discrete logarithms over finite fields, Ph.D. thesis, Univ. of Georgia, 1992. 
  110. J. van de Lune, (1974) The truncated average limit and one of its applications in analytic number theory, Math. CentrumAmsterdam, Report ZW 20/74. Zbl0291.10035MR460254
  111. H.L. Montgomery, (1971) Topics in Multiplicative Number Theory, Lecture Notes in Math.227, Springer, Berlin. Zbl0216.03501MR337847
  112. P. Moree, (1992) An interval result for the number field Ψ (x, y ) function, Manuscripta Math.76, 437-450. Zbl0772.11044
  113. (1993) Psixyology and Diophantine equations, Thesis, Leiden University. Zbl0784.11046MR1349577
  114. P. Moree & C.L. Stewart, (1990) Some Ramanujan-Nagell equations with many solutions, Indag. Math.(N. S.) 1, 465-472. Zbl0718.11011MR1106093
  115. Y. Motohashi, (1976) An induction principle for the generalization of Bombieri's prime number theorem, Proc. Japan Acad.52, 273-275. Zbl0355.10035MR422179
  116. (1979) A note on almost primes in short intervals, Proc. Japan Acad. Sci. Ser. A Math. Sci.55 (1979), 225-226. Zbl0445.10032MR542398
  117. M. Naimi, (1988) Les entiers sans facteur carre ≤ x dont les facteurs premiers sont ≤y, in: Groupe de travail en théorie analytique des nombres 1986-87, Publ. Math. Orsay88-01, pp. 69-76. Zbl0669.10066
  118. T. Nagell, (1921) Generalisation d'un théorème de Tchébycheff, J. Math. Pur. Appl. (8) 4, 343-356. Zbl48.1173.01JFM48.1173.01
  119. K.K. Norton, (1968) Upper bounds for kth power coset representatives modulo n, Acta Arith.15, 161-179. Zbl0177.06801MR240065
  120. (1971) Numbers with small prime factors and the least kth power non residue, Memoirs of the Amer. Math. Soc.106. Zbl0211.37801
  121. A.M. Odlyzko, (1985) Discrete logarithms in finite fields and their cryptographic significance, in Advances in Cryptology: Proceedings of Eurocrypt '84, (T. Beth, N. Cot, I. Ingemarsson, eds.), Lecture Notes in Computer Science209, Springer-Verlag. Zbl0594.94016MR825593
  122. (1993) Discrete logarithms and smooth polynomials, preprint. 
  123. C. Pomerance, (1980) Popular values of Euler's function, Mathematika27, 84-89. Zbl0437.10001MR581999
  124. (1987) Fast, rigorous factorization and discrete logarithm algorithms, in: Discrete Algorithms and Complexity (Kyoto, 1986), Academic Press, Boston. Zbl0659.10003MR910929
  125. K. Ramachandra, (1969) A note on numbers with a large prime factor. J. London Math. Soc. (2) 1, 303-306. Zbl0179.07301MR246849
  126. (1970) A note on numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 34, 39-48. Zbl0218.10057MR299568
  127. (1971) A note on numbers with a large prime factor. III, Acta Arith.19, 49-62. Zbl0218.10058MR299569
  128. K. Ramachandra & T.N. Shorey, (1973) On gaps between numbers with a large prime factor, Acta Arith.24, 99-111. Zbl0258.10022MR327684
  129. V. Ramaswami, (1949) On the number of positive integers less than x and free of prime divisors greater than xc, Bull. Amer. Math. Soc.55, 1122-1127. Zbl0035.31502MR31958
  130. (1951) Number of integers in an assigned arithmetic progression, ≤ x and prime to primes greater than xc, Proc. Amer. Math. Soc.2, 318-319. Zbl0043.04701
  131. R.A. Rankin, (1938) The difference between consecutive prime numbers, J. London Math. Soc.13, 242-247. Zbl0019.39403JFM64.0982.01
  132. J. B. van Rongen, (1975) On the largest prime divisor of an integer, Indag. Math.37, 70-76. Zbl0298.10023MR376573
  133. E. Saias, (1989) Sur le nombre des entiers sans grand facteur premier, J. Number Theory32, 78-99. Zbl0676.10028MR1002116
  134. (1992) Entiers sans grand ni petit facteur premier. I, Acta Arith.61, 347-374. Zbl0766.11038MR1168094
  135. E.J. Scourfield, (1991) On some sums involving the largest prime divisor of n, Acta Arith.59, no 4, 339-363. Zbl0708.11047MR1134911
  136. T.N. Shorey, (1973) On gaps between numbers with a large prime factor II, Acta Arith.25, 365-373. Zbl0258.10023MR344201
  137. H. Smida, (1991) Sur les puissances de convolution de la fonction de Dickman, Acta Arith.59, no 2, 123-143. Zbl0881.11069MR1133953
  138. (1993) Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, Acta Arith.63, no 1, 21-50. Zbl0769.11034MR1201617
  139. W. Specht, (1949) Zahlenfolgen mit endlich vielen Primteilern, S.-B. Bayer. Akad. Wiss. Math. Nat. Abt. 1948, 149-169. Zbl0034.31503MR33845
  140. G. Tenenbaum, (1985) Sur les entiers sans grand facteur premier, in: Séminaire de Théorie des Nombres, Bordeaux1984-85, Univ. Bordeaux I, Talence, 12 pp. MR848364
  141. (1988) La méthode du col en théorie analytique des nombres, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris1985-86, Birkhäuser, Progress in Math.75, 411-441. Zbl0664.10024MR990518
  142. (1990a) Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Univ. Nancy1. Zbl0788.11001
  143. (1990b) Sur un problème d'Erdös et Alladi, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris 1988-89, Birkhäuser, Progress in Math.91, 221-239. Zbl0721.11035
  144. (1990c) Sur une question d'Erdös et Schinzel II, Inventiones Math.99, 215-224. Zbl0699.10063
  145. (1993) Cribler les entiers sans grand facteur premier, in: R.C.Vaughan (ed.) Theory and applications of numbers without large prime factors, Phal. Trans. Royal l Soc. London, series A, to appear. MR1253499
  146. R. Tijdeman, (1972) On the maximal distance of numbers with a large prime factor, J. London Math. Soc. (2) 5, 313-320. Zbl0238.10018MR313207
  147. (1973) On integers with many small prime factors, Compositio Math.26, 319-330. Zbl0267.10056MR325549
  148. (1974) On the maximal distance between integers composed of small primes, Compositio Math.28, 159-162. Zbl0283.10024MR345917
  149. N.M. Timofeev, (1977) Polynomials with small prime divisors (Russian), Taskent Gos. Univ. Naun. Trudy 548 Voprosy Mat., 87-91. Zbl0419.10041MR565981
  150. E.C. Titchmarsh and D.R. Heath-Brown, (1986) The theory of the Riemann zeta function, Second Edition, Oxford Univ. Press, Oxford. Zbl0601.10026MR882550
  151. J. Turk, (1980) Prime divisors of polynomials at consecutive integers, J. Reine Angew. Math.319, 142-152. Zbl0425.10045MR586120
  152. (1982) Products of integers in short intervals, Report 8228M, Econometric Institut, Erasmus University, Rotterdam. 
  153. R.C. Vaughan, (1989) A new iterative method in Waring's problem, Acta Math.162, 1-71. Zbl0665.10033MR981199
  154. A.M. Vershik, (1987) The asymptotic distribution of factorizations of natural numbers into prime divisors, Soviet Math. Dokl.34, 57-61. Zbl0625.10033
  155. I.M. Vinogradov, (1926) On a bound for the least nth power non-residue (Russian), Izv. Akad. Nauk SSSR20, 47-58; English transl.: Trans. Amer. Math. Soc.29 (1927), 218-226. JFM53.0124.04
  156. Y. Wang, (1964) Estimation and application of a character sum (Chinese), Shuzue Jinzhan7, 78-83. Zbl0501.10044MR229588
  157. R. Warlimont, (1990) Sieving by large prime factors, Monatshefte Math.109, 247-256. Zbl0713.11068MR1058411
  158. (1991) Arithmetical semigroups, II: Sieving by large and small prime elements. Sets of multiples, Manuscripta Math.71, 197-221. Zbl0735.11046MR1101269
  159. F. Wheeler, (1990) Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc.318, 491-523. Zbl0697.10035MR963247
  160. D. Wolke, (1971) Polynomial values with small prime divisors, Acta Arith.19, 327-333. Zbl0233.10033MR292789
  161. (1973) Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. I, Math. Ann.202, 1-205. Zbl0238.10031MR327688
  162. T. Wooley, (1992) Large improvements in Waring's problem, Annals Math.(2) 135, no 1, 135-164. Zbl0754.11026MR1147960
  163. T.Z. Xuan, (1988) On a problem of Erdös and Ivić, Publ. Inst. Math. (Beograd) (N. S.) 43 (57), 9-15. Zbl0648.10027MR962250
  164. (1989a) On sums involving reciprocals of certain large additive functions. I, Publ. Inst. Math. (Beograd) (N. S.) 45 (59), 41-55. Zbl0682.10030MR1021915
  165. (1989b) On sums involving reciprocals of certain large additive functions. II, Publ. Inst. Math. (Beograd) (N. S.) 46 (60), 25-32. Zbl0698.10033MR1060053
  166. (1990) The average of dk(n) over integers free of large prime factors, Acta Arith.55, 249-260. Zbl0657.10046MR1067973
  167. (1991) The average of the divisor function over integers without large prime factors, Chinese Ann. of Math. Ser.A12, 28-33. Zbl0751.11044MR1118259
  168. (1993) On the asymptotic behavior of the DicZanan-de Bruijn function, Math. Ann.297, 519-533. Zbl0786.11058MR1245402

Citations in EuDML Documents

top
  1. Greg Martin, Denser Egyptian fractions
  2. Ti Zuo Xuan, On smooth integers in short intervals under the Riemann Hypothesis
  3. Gergely Harcos, Waring's problem with small prime factors
  4. Mongi Naimi, Répartition en moyenne de certaines fonctions arithmétiques sur l'ensemble des entiers sans grand facteur premier
  5. R. de la Bretèche, Sommes sans grand facteur premier
  6. A. Smati, J. Wu, Distribution of values of Euler's function over integers free of large prime factors
  7. Karl K. Norton, A character-sum estimate and applications
  8. Jeffrey C. Lagarias, Kannan Soundararajan, Smooth solutions to the a b c equation: the x y z Conjecture

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.