Integers without large prime factors
Adolf Hildebrand; Gerald Tenenbaum
Journal de théorie des nombres de Bordeaux (1993)
- Volume: 5, Issue: 2, page 411-484
- ISSN: 1246-7405
Access Full Article
topHow to cite
topHildebrand, Adolf, and Tenenbaum, Gerald. "Integers without large prime factors." Journal de théorie des nombres de Bordeaux 5.2 (1993): 411-484. <http://eudml.org/doc/93590>.
@article{Hildebrand1993,
author = {Hildebrand, Adolf, Tenenbaum, Gerald},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {smooth numbers; asymptotic estimates; distribution of integers without large prime factors; arithmetic progressions; short intervals; survey},
language = {eng},
number = {2},
pages = {411-484},
publisher = {Université Bordeaux I},
title = {Integers without large prime factors},
url = {http://eudml.org/doc/93590},
volume = {5},
year = {1993},
}
TY - JOUR
AU - Hildebrand, Adolf
AU - Tenenbaum, Gerald
TI - Integers without large prime factors
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 2
SP - 411
EP - 484
LA - eng
KW - smooth numbers; asymptotic estimates; distribution of integers without large prime factors; arithmetic progressions; short intervals; survey
UR - http://eudml.org/doc/93590
ER -
References
top- M. Abramowitz & I. Stegun, (1964) Handbook of Mathematical Functions, National Bureau of Standards, Wash ington1964; Tenth Printing, Dover, New York, 1972.
- W.R. Alford, A. Granville, & C. Pomerance, (1993) There are infinitely many Carmichael numbers, preprint. Zbl0816.11005MR1283874
- K. Alladi, (1982a) Asymptotic estimates of sums involving the Moebius function. II, Trans. Amer. Math. Soc. 272, 87-105. Zbl0499.10050MR656482
- (1982b) The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math.335, 180-196. Zbl0483.10050MR667466
- (1987) An Erdös-Kac theorem for integers without large prime factors, Acta Arith.49, 81-105. Zbl0627.10030MR913766
- K. Alladi and P. Erdös, (1977) On an additive arithmetic function, Pacific J. Math.71, 275-294. Zbl0359.10038MR447086
- (1979) On the asymptotic behavior of large prime factors of integers, Pacific J. Math.82, 295-315. Zbl0419.10042MR551689
- A. Balog, (1984) p + a without large prime factors, in: Séminaire de Théorie des Nombres, Bordeaux 1983-84, Univ. Bordeaux, Talence, Exp. No. 31, 5 pp. Zbl0588.10052MR784077
- (1987) On the distribution of integers having no large prime factor, in: Journées Arithmétiques, Besançon 1985, Astérisque147/148, pp. 27-31. Zbl0617.10031MR891417
- (1989) On additive representations of integers, Acta Math. Hungar.54, 297-301. Zbl0689.10050MR1029092
- A. Balog, P. Erdös, & G. Tenenbaum, (1990) On arithmetic functions involving consecutive divisors, in: Analytic Number Theory (B. C. Berndt et al., eds.), Proc. Conf. in Honor of Paul T. Bateman, Birkhäuser, Progress in Math.85, 77-90. Zbl0718.11041MR1084174
- A. Balog & C. Pomerance, (1992) The distribution of smooth numbers in arithmetic progressions, Amer. Math. Soc.115, 33-43. Zbl0752.11036MR1089401
- A. Balog & A. Sárközy, (1984a) On sums of integers having small prime factors. I, Stud. Sci. Math. Hungar. 19, 35-47. Zbl0569.10025MR787784
- (1984b) On sums of integers having small prime factors. II, Stud. Sci. Math. Hungar. 19, 81-88. Zbl0569.10026
- F. Beukers, (1975) The lattice-points of n-dimensional tedrahedra, Indag. Math.37, 365-372. Zbl0312.10037MR384732
- P. Billingsley, (1972) On the distribution of large prime divisors, Period. Math. Hungar.2, 283-289. Zbl0242.10033MR335462
- A.E. Brouwer, (1974) Two number theoretic sums, Math. CentrumAmsterdam, Report ZW 19/74. Zbl0274.10042MR345918
- N. G. de Bruijn, (1951a) The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15, 25-32. Zbl0043.06502MR43838
- (1951b) On the number of positive integers ≤ x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A54, 50-60. Zbl0042.04204
- (1966) On the number of positive integers ≤ x and free of prime factors > y, II, Nederl. Akad. Wetensch. Proc. Ser. A69, 239-247. Zbl0139.27203
- N. G. de Bruijn & J. H. van Lint, (1964) Incomplete sums of multiplicative functions I, II, Nederl. Akad. Wetensch. Proc. Ser. A67, 339-347; 348-359. Zbl0131.28703MR174530
- A.A. Buchstab, (1949) On those numbers in an arithmetic progression all prime factors of which are small in magnitude (Russian), Dokl. Akad. Na u k SSSR67, 5-8. MR30995
- E.R. Canfield, (1982) On the asymptotic behavior of the Dickman-de Bruijn function, Congr. Numer.38, 139-148. Zbl0511.10005MR725875
- E R. Canfield, P. Erdös, & C. Pomerance, (1983) On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory17, 1-28. Zbl0513.10043MR712964
- M. Car, (1987) Théorèmes de densité dans Fq[X], Acta Arith.48, 145-165. Zbl0575.12017MR895437
- S.D. Chowla and T. Vijayaraghavan, (1947) On the largest prime divisors of numbers, J. Indian Math. Soc. (N. S.) 11, 31-37. Zbl0039.03702MR23269
- J.-M. De Koninck & D. Hensley, (1978) Sums taken over n ≤ x with prime factors ≤ y of zΩ(n), and their derivatives with respect to z, J. Indian Math. Soc. (N. S.) 42, 353-365. Zbl0473.10028
- J.-M. De Koninck & A. Ivić, (1984a) Sommes de réciproques de grandes fonctions additives, Publ. Inst. Math. (Beograd) (N. S.) 35, 41-48. Zbl0552.10026MR779618
- (1984b) The distribution of the average prime divisor of an integer, Arch. Math.43, 37-43. Zbl0519.10027
- J.-M. De Koninck & A. Mercier, (1989) Les fonctions arithmetiques et le plus grand facteur premier, Acta Arith.52, 25-48. Zbl0687.10030MR1005154
- J.-M. Deshouillers & H. Iwaniec, (1982) On the greatest prime factor of n2+1, Ann. Inst. Fourier (Grenoble) 32, 1-11. Zbl0489.10038MR694125
- K. Dickman, (1930) On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys.22, 1-14. Zbl56.0178.04JFM56.0178.04
- R. Eggleton & J.L. Selfridge, (1976) Consecutive integers with no large prime factors, J. Austral. Math. Soc. Ser.A22, 1-11. Zbl0343.10024MR439778
- V. Ennola, (1969) On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. AI440, 16 pp. Zbl0174.33903MR244175
- P. Erdös, (1935) On the normal number of prime factors of p -1 and some other related problems concerning Euler's Φ-function, Quart. J. Math. (Oxford) 6, 205-213. Zbl0012.14905JFM61.0129.05
- (1952) On the greatest prime factor of Π f (k), J. London Math. Soc.27, 379-384. Zbl0046.04102
- (1955) On consecutive integers, Nieuw Arch. Wisk. (3) 3, 124-128. Zbl0065.27605MR73628
- P. Erdös & A. Ivić, (1980) Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Stud. Sci. Math. Hungar.15, 183-199. Zbl0455.10031MR681439
- P. Erdös, A. Ivić, and C. Pomerance, (1986) On sums involving reciprocals of the largest prime factor of an integer, Glas. Mat. III. Ser.21 (41), 283-300. Zbl0615.10055MR896810
- P. Erdös & A. Schinzel, (1990) On the greatest prime factor of Πx k=1 f(k), Acta Arith.55, 191-200. Zbl0715.11050
- A.S. Fainleib, (1967) On the estimation from below of the number of numbers with small prime factors (Russian), Dokl. Akad. Nauk USSR7, 3-5. Zbl0216.31101MR306138
- E. Fouvry & F. Grupp, (1986) On the switching principle in sieve theory, J. Reine Angew. Math.370, 101-126. Zbl0588.10051MR852513
- E. Fouvry & G. Tenenbaum, (1990) Diviseurs de Titchmarsh des entiers sans grand facteur premier, in: Analytic Number Theory (E. Fouvry, ed.), Tokyo 1988, Lecture Notes in Math.1434, Springer, Berlin, pp. 86-102. Zbl0708.11043MR1071746
- (1991) Entiers sans grand facteur premier en progressions arithmétiques, London Math. Soc. (3) 63, 449-494. Zbl0745.11042MR1127146
- J.B. Friedlander, (1972) On the number of ideals free of large prime divisors, J. Reine Angew. Math.255, 1-7. Zbl0243.10034MR299579
- (1973a) On the least kth power residue in an algebraic number field, London Math. Soc. (3) 26, 19-34. Zbl0253.12002
- (1973b) Integers without large prime factors, Nederl. Akad. Wetensch. Proc. Ser.A76, 443-451. Zbl0267.10057MR340201
- (1976) Integers free from large and small primes, Proc. London Math. Soc. (3) 33, 565-576. Zbl0344.10021MR417078
- (1981) Integers without large prime factors. II, Acta Arith.39, 53-57. Zbl0485.10033MR638742
- (1984a) Large prime factors in small intervals, in: Topics in classical number theory, Colloqu. Math. Soc. Janos Bolyai34, North-Holland, Amsterdam, 511-518. Zbl0546.10035MR781152
- (1984b) Integers without large prime factors. III, Arch. Math.43, 32-36. Zbl0521.10036MR758337
- (1985) Notes on Chebyshev's method, Rocky Mountain J. Math.15, 377-383. Zbl0585.10031MR823250
- (1989) Shifted primes without large prime factors, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 393-401. MR1123085
- J.B. Friedlander & J.C. Lagarias, (1987) On the distribution in short intervals of integers having no large prime factor, J. Number Theory25, 249-273. Zbl0606.10033MR880461
- J. Galambos, (1976) The sequence of prime divisors of integers, Acta Arith.31, 213-218. Zbl0303.10039MR439795
- J.R. Gillet, (1970) On the largest prime divisor of ideals in fields of degree n, Duke Math. J.37, 589-600. Zbl0211.07804MR268153
- D.A. Goldston & K.S. McCurley, (1988) Sieving the positive integers by large primes, J. Number Theory28, 94-115. Zbl0639.10028MR925610
- A. Granville, (1989) On positive integers ≤ x with prime factors ≤ tlog x, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 403-422. Zbl0686.10031
- (1991a) The lattice points of an n-dimensional tedrahedron, Aequationes Math. 41, 234-241. Zbl0733.11034MR1102312
- (1991b) On pairs of coprime integers with no large prime factors, Expos. Math.9, 335-350. Zbl0745.11043MR1137813
- (1993a) Integers, without large prime factors, in arithmetic progressions. I, Acta Math.170, 255-273. Zbl0784.11045MR1226529
- (1993b) Integers, without large prime factors, in arithmetic progressions. II, preprint. Zbl0792.11036
- J.L. Hafner, (1993) On smooth numbers in short intervals under the Riemann Hypothesis, preprint.
- H. Halberstarn & H.-E. Richert, (1971) Mean value theorems for a class of arithmetic functions, Acta Arith.18, 243-256; Add. & Corr., ibid. 28, 107-110. Zbl0217.32002MR289435
- (1974) Sieve Methods, Academic Press, London, New York, San Francisco. Zbl0298.10026MR424730
- H. Halberstam & K.F. Roth, (1951) On the gaps between consecutive k-free integers, J. London Math. Soc.26, 268-273. Zbl0043.04901MR43120
- G. Harman, (1991) Short intervals containing numbers without large prime factors, Math. Proc. Cambridge Philos. Soc.109, 1-5. Zbl0724.11041MR1075116
- D.G. Hazlewood, (1973) On integers all of whose prime factors are small, Bull. London Math. Soc.5, 159-163. Zbl0276.10022MR337846
- (1975a) On k-free integers with small prime factors, Proc. Amer. Math. Soc.52, 40-44. Zbl0279.10033MR374056
- (1975b) Sums over positive integers with few prime factors, J. Number Theory7, 189-207. Zbl0302.10037MR371835
- (1975c) On sums over Gaussian integers, Trans. Amer. Math. Soc.209, 295-310. Zbl0308.10038MR371842
- (1977) On ideals having only small prime factors, Rocky Mountain J. Math.7, 753-768. Zbl0373.12004MR444591
- D.R. Heath-Brown, (1987) Consecutive almost-primes, J. Indian Math. Soc. (N. S.) 52, 39-49. Zbl0668.10051MR989229
- D. Hensley, (1985) The number of positive integers ≤ x and free of prime divisors > y, J. Number Theory21, 286-298. Zbl0575.10037
- (1986) A property of the counting function of integers with no large prime factors, J. Number Theory22, 46-74. Zbl0575.10039MR821136
- (1987) The distribution of Ω(n) among numbers with no large prime factors, in: Analytic Number Theory and Diophantine Problems (A. Adolphson et al., eds.), Proc. of a Conf. at Oklahoma State University 1984, Birkhauser, Progress in Math.70, 247-281. Zbl0626.10037
- A. Hildebrand, (1984a) Integers free of large prime factors and the Riemann Hypothesis, Mathematika31, 258-271. Zbl0544.10042MR804201
- (1984b) On a problem of Erdös and Alladi, Monatsh. Math.97, 119-124. Zbl0531.10046MR747079
- (1985a) Integers free of large prime factors in short intervals, Quart. J. Math. (Oxford) (2) 36, 57-69. Zbl0562.10018
- (1985b) On a conjecture of A. Balog, Proc. Amer. Math. Soc.95, 517-523. Zbl0597.10056
- (1986a) On the number of positive integers < x and free of prime factors > y, J. Number Theory22, 289-307. Zbl0575.10038MR831874
- (1986b) On the local behavior of Ψ(x, y), Trans. Amer. Math. Soc.297, 729-751. Zbl0611.10028
- (1987) On the number of prime factors of integers without large prime divisors, J. Number Theory25, 81-106. Zbl0621.10028MR871170
- (1989) Integer sets containing strings of consecutive integers, Mathematika36, 60-70. Zbl0685.10036MR1014201
- A. Hildebrand & G. Tenenbaum, (1986) On integers free of large prime factors, Trans. Amer. Math. Soc.296, 265-290. Zbl0601.10028MR837811
- (1993) On a class of difference differential equations arising in number theory, J. d'Analyse Math.61, 145-179. Zbl0797.11072MR1253441
- N.A. Hmyrova, (1964) On polynomials with small prime divisors (Russian), Dokl. Akad. Nauk SSSR155, 1268-1271. Zbl0127.27005MR160764
- (1966) On polynomials with small prime divisors. II (Russian), Izv. Akad. Nauk SSSR Ser. Mat.30, 1367-1372. MR207660
- C. Hooley, (1967) On the greatest prime factor of a quadratic polynomial, Acta Math.117, 2-16. Zbl0146.05704MR204383
- (1978) On the greatest prime factor of a cubic polynomial, J. Reine Angew. Math. 303/304, 21-50. Zbl0391.10028MR514671
- A. Ivić, (1981) Sum of reciprocals of the largest prime factor of an integer, Arch. Math.36, 57-61. Zbl0436.10019MR612237
- (1985a) The Riemann zeta-function, Wiley, New York. Zbl0556.10026
- (1985b) On squarefree numbers with restricted prime factors, Stud. Sci. Math. Hungar.20, 183-187. MR886019
- (1987) On some estimates involving the number of prime divisors of an integer, Acta Arith.49, 21-33. Zbl0573.10038MR913761
- B. Hornfeck, (1959) Zur Verteilung gewisser Primzahlprodukte, Math. Ann.139, 14-30. Zbl0092.04803MR114796
- A. Ivić and C. Pomerance, (1984) Estimates for certain sums involving the largest prime factor of an integer, in: Topics in classical number theory, Colloq. Budapest1981, Colloq. Math. Soc. Janos Bolyai34, pp. 769-789. Zbl0546.10037MR781162
- A. Ivić and G. Tenenbaum, (1986) Local densities over integers free of large prime factors, Quart. J. Math. (Oxford) (2) 37, 401-417. Zbl0604.10024MR868616
- J.H. Jordan, (1965) The divisibility of Gaussian integers by large Gaussian primes, Duke Math. J.32, 503-510. Zbl0156.04904MR184921
- M. Jutila, (1974) On numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 38, 125-130. Zbl0335.10045MR399013
- D.E. Knuth & L. Trabb Pardo, (1976) Analysis of a simple factorization algorithm, Theoret. Comput. Sci.3, 321-348. Zbl0362.10006MR498355
- U. Krause, (1990) Abschätzungen für die Funktion ΨK (x,y) in algebraischen Zahlkörpern, Manuscripta Math.69, 319-331. Zbl0759.11028
- M. Langevin, (1975) Plus grand facteur premier d'entiers voisins, C. R. Acad. Sci. Paris Sér. A-B281, A491-A493. Zbl0311.10044MR396442
- D.H. Lehmer & E. Lehmer, (1941) On the first case of Fermat's last theorem, Bull. Amer. Math. Soc.47, 139-142. Zbl0025.25104MR3657JFM67.0122.05
- H.W. Lenstra (1987) Factoring integers with elliptic curves, Ann. Alath.126, 649-673. Zbl0629.10006MR916721
- B.V. Levin & U. Chariev, (1986) Sums of multiplicative functions with respect to numbers with prime divisors from given intervals (Russian), Dokl. Akad. Nauk. Tadzh. SSSR29, 383-387. Zbl0621.10033MR887784
- B.V. Levin & A.S. Fainleib, (1967) Application of some integral equations to problems in number theory, Russian Math. Surveys22, 119-204. Zbl0204.06502MR229600
- J. H. van Lint & H.-E. Richert, (1964) Über die Surmme Σn≤x,P(n)≤ y μ2(n)/ϕ(n), Nederl. Akad. Wetensch. Proc. Ser.A67, 582-587. Zbl0318.10032
- S.P. Lloyd, (1984) Ordered prime divisors of a random integer, Ann. Probability12, 1205-1212. Zbl0551.10042MR757777
- R. Lovorn, (1992) Rigorous, subexponential algorithms for discrete logarithms over finite fields, Ph.D. thesis, Univ. of Georgia, 1992.
- J. van de Lune, (1974) The truncated average limit and one of its applications in analytic number theory, Math. CentrumAmsterdam, Report ZW 20/74. Zbl0291.10035MR460254
- H.L. Montgomery, (1971) Topics in Multiplicative Number Theory, Lecture Notes in Math.227, Springer, Berlin. Zbl0216.03501MR337847
- P. Moree, (1992) An interval result for the number field Ψ (x, y ) function, Manuscripta Math.76, 437-450. Zbl0772.11044
- (1993) Psixyology and Diophantine equations, Thesis, Leiden University. Zbl0784.11046MR1349577
- P. Moree & C.L. Stewart, (1990) Some Ramanujan-Nagell equations with many solutions, Indag. Math.(N. S.) 1, 465-472. Zbl0718.11011MR1106093
- Y. Motohashi, (1976) An induction principle for the generalization of Bombieri's prime number theorem, Proc. Japan Acad.52, 273-275. Zbl0355.10035MR422179
- (1979) A note on almost primes in short intervals, Proc. Japan Acad. Sci. Ser. A Math. Sci.55 (1979), 225-226. Zbl0445.10032MR542398
- M. Naimi, (1988) Les entiers sans facteur carre ≤ x dont les facteurs premiers sont ≤y, in: Groupe de travail en théorie analytique des nombres 1986-87, Publ. Math. Orsay88-01, pp. 69-76. Zbl0669.10066
- T. Nagell, (1921) Generalisation d'un théorème de Tchébycheff, J. Math. Pur. Appl. (8) 4, 343-356. Zbl48.1173.01JFM48.1173.01
- K.K. Norton, (1968) Upper bounds for kth power coset representatives modulo n, Acta Arith.15, 161-179. Zbl0177.06801MR240065
- (1971) Numbers with small prime factors and the least kth power non residue, Memoirs of the Amer. Math. Soc.106. Zbl0211.37801
- A.M. Odlyzko, (1985) Discrete logarithms in finite fields and their cryptographic significance, in Advances in Cryptology: Proceedings of Eurocrypt '84, (T. Beth, N. Cot, I. Ingemarsson, eds.), Lecture Notes in Computer Science209, Springer-Verlag. Zbl0594.94016MR825593
- (1993) Discrete logarithms and smooth polynomials, preprint.
- C. Pomerance, (1980) Popular values of Euler's function, Mathematika27, 84-89. Zbl0437.10001MR581999
- (1987) Fast, rigorous factorization and discrete logarithm algorithms, in: Discrete Algorithms and Complexity (Kyoto, 1986), Academic Press, Boston. Zbl0659.10003MR910929
- K. Ramachandra, (1969) A note on numbers with a large prime factor. J. London Math. Soc. (2) 1, 303-306. Zbl0179.07301MR246849
- (1970) A note on numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 34, 39-48. Zbl0218.10057MR299568
- (1971) A note on numbers with a large prime factor. III, Acta Arith.19, 49-62. Zbl0218.10058MR299569
- K. Ramachandra & T.N. Shorey, (1973) On gaps between numbers with a large prime factor, Acta Arith.24, 99-111. Zbl0258.10022MR327684
- V. Ramaswami, (1949) On the number of positive integers less than x and free of prime divisors greater than xc, Bull. Amer. Math. Soc.55, 1122-1127. Zbl0035.31502MR31958
- (1951) Number of integers in an assigned arithmetic progression, ≤ x and prime to primes greater than xc, Proc. Amer. Math. Soc.2, 318-319. Zbl0043.04701
- R.A. Rankin, (1938) The difference between consecutive prime numbers, J. London Math. Soc.13, 242-247. Zbl0019.39403JFM64.0982.01
- J. B. van Rongen, (1975) On the largest prime divisor of an integer, Indag. Math.37, 70-76. Zbl0298.10023MR376573
- E. Saias, (1989) Sur le nombre des entiers sans grand facteur premier, J. Number Theory32, 78-99. Zbl0676.10028MR1002116
- (1992) Entiers sans grand ni petit facteur premier. I, Acta Arith.61, 347-374. Zbl0766.11038MR1168094
- E.J. Scourfield, (1991) On some sums involving the largest prime divisor of n, Acta Arith.59, no 4, 339-363. Zbl0708.11047MR1134911
- T.N. Shorey, (1973) On gaps between numbers with a large prime factor II, Acta Arith.25, 365-373. Zbl0258.10023MR344201
- H. Smida, (1991) Sur les puissances de convolution de la fonction de Dickman, Acta Arith.59, no 2, 123-143. Zbl0881.11069MR1133953
- (1993) Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, Acta Arith.63, no 1, 21-50. Zbl0769.11034MR1201617
- W. Specht, (1949) Zahlenfolgen mit endlich vielen Primteilern, S.-B. Bayer. Akad. Wiss. Math. Nat. Abt. 1948, 149-169. Zbl0034.31503MR33845
- G. Tenenbaum, (1985) Sur les entiers sans grand facteur premier, in: Séminaire de Théorie des Nombres, Bordeaux1984-85, Univ. Bordeaux I, Talence, 12 pp. MR848364
- (1988) La méthode du col en théorie analytique des nombres, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris1985-86, Birkhäuser, Progress in Math.75, 411-441. Zbl0664.10024MR990518
- (1990a) Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Univ. Nancy1. Zbl0788.11001
- (1990b) Sur un problème d'Erdös et Alladi, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris 1988-89, Birkhäuser, Progress in Math.91, 221-239. Zbl0721.11035
- (1990c) Sur une question d'Erdös et Schinzel II, Inventiones Math.99, 215-224. Zbl0699.10063
- (1993) Cribler les entiers sans grand facteur premier, in: R.C.Vaughan (ed.) Theory and applications of numbers without large prime factors, Phal. Trans. Royal l Soc. London, series A, to appear. MR1253499
- R. Tijdeman, (1972) On the maximal distance of numbers with a large prime factor, J. London Math. Soc. (2) 5, 313-320. Zbl0238.10018MR313207
- (1973) On integers with many small prime factors, Compositio Math.26, 319-330. Zbl0267.10056MR325549
- (1974) On the maximal distance between integers composed of small primes, Compositio Math.28, 159-162. Zbl0283.10024MR345917
- N.M. Timofeev, (1977) Polynomials with small prime divisors (Russian), Taskent Gos. Univ. Naun. Trudy 548 Voprosy Mat., 87-91. Zbl0419.10041MR565981
- E.C. Titchmarsh and D.R. Heath-Brown, (1986) The theory of the Riemann zeta function, Second Edition, Oxford Univ. Press, Oxford. Zbl0601.10026MR882550
- J. Turk, (1980) Prime divisors of polynomials at consecutive integers, J. Reine Angew. Math.319, 142-152. Zbl0425.10045MR586120
- (1982) Products of integers in short intervals, Report 8228M, Econometric Institut, Erasmus University, Rotterdam.
- R.C. Vaughan, (1989) A new iterative method in Waring's problem, Acta Math.162, 1-71. Zbl0665.10033MR981199
- A.M. Vershik, (1987) The asymptotic distribution of factorizations of natural numbers into prime divisors, Soviet Math. Dokl.34, 57-61. Zbl0625.10033
- I.M. Vinogradov, (1926) On a bound for the least nth power non-residue (Russian), Izv. Akad. Nauk SSSR20, 47-58; English transl.: Trans. Amer. Math. Soc.29 (1927), 218-226. JFM53.0124.04
- Y. Wang, (1964) Estimation and application of a character sum (Chinese), Shuzue Jinzhan7, 78-83. Zbl0501.10044MR229588
- R. Warlimont, (1990) Sieving by large prime factors, Monatshefte Math.109, 247-256. Zbl0713.11068MR1058411
- (1991) Arithmetical semigroups, II: Sieving by large and small prime elements. Sets of multiples, Manuscripta Math.71, 197-221. Zbl0735.11046MR1101269
- F. Wheeler, (1990) Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc.318, 491-523. Zbl0697.10035MR963247
- D. Wolke, (1971) Polynomial values with small prime divisors, Acta Arith.19, 327-333. Zbl0233.10033MR292789
- (1973) Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. I, Math. Ann.202, 1-205. Zbl0238.10031MR327688
- T. Wooley, (1992) Large improvements in Waring's problem, Annals Math.(2) 135, no 1, 135-164. Zbl0754.11026MR1147960
- T.Z. Xuan, (1988) On a problem of Erdös and Ivić, Publ. Inst. Math. (Beograd) (N. S.) 43 (57), 9-15. Zbl0648.10027MR962250
- (1989a) On sums involving reciprocals of certain large additive functions. I, Publ. Inst. Math. (Beograd) (N. S.) 45 (59), 41-55. Zbl0682.10030MR1021915
- (1989b) On sums involving reciprocals of certain large additive functions. II, Publ. Inst. Math. (Beograd) (N. S.) 46 (60), 25-32. Zbl0698.10033MR1060053
- (1990) The average of dk(n) over integers free of large prime factors, Acta Arith.55, 249-260. Zbl0657.10046MR1067973
- (1991) The average of the divisor function over integers without large prime factors, Chinese Ann. of Math. Ser.A12, 28-33. Zbl0751.11044MR1118259
- (1993) On the asymptotic behavior of the DicZanan-de Bruijn function, Math. Ann.297, 519-533. Zbl0786.11058MR1245402
Citations in EuDML Documents
top- Greg Martin, Denser Egyptian fractions
- Shichun Yang, Florian Luca, Alain Togbé, On a divisibility problem
- Ti Zuo Xuan, On smooth integers in short intervals under the Riemann Hypothesis
- Gergely Harcos, Waring's problem with small prime factors
- Mongi Naimi, Répartition en moyenne de certaines fonctions arithmétiques sur l'ensemble des entiers sans grand facteur premier
- R. de la Bretèche, Sommes sans grand facteur premier
- A. Smati, J. Wu, Distribution of values of Euler's function over integers free of large prime factors
- Karl K. Norton, A character-sum estimate and applications
- Jeffrey C. Lagarias, Kannan Soundararajan, Smooth solutions to the equation: the Conjecture
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.