The number of solutions of the Mordell equation
Acta Arithmetica (1999)
- Volume: 88, Issue: 2, page 173-179
- ISSN: 0065-1036
Access Full Article
topHow to cite
topDimitrios Poulakis. "The number of solutions of the Mordell equation." Acta Arithmetica 88.2 (1999): 173-179. <http://eudml.org/doc/207237>.
@article{DimitriosPoulakis1999,
author = {Dimitrios Poulakis},
journal = {Acta Arithmetica},
keywords = {Mordell equation; number of solutions; cubic diophantine equation; elliptic curves},
language = {eng},
number = {2},
pages = {173-179},
title = {The number of solutions of the Mordell equation},
url = {http://eudml.org/doc/207237},
volume = {88},
year = {1999},
}
TY - JOUR
AU - Dimitrios Poulakis
TI - The number of solutions of the Mordell equation
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 2
SP - 173
EP - 179
LA - eng
KW - Mordell equation; number of solutions; cubic diophantine equation; elliptic curves
UR - http://eudml.org/doc/207237
ER -
References
top- [1] A. Brumer and J. Silverman, The number of elliptic curves over ℚ with conductor N, Manuscripta Math. 91 (1996), 95-102. Zbl0868.11029
- [2] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. Zbl0521.10015
- [3] J. H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to , Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248. Zbl0611.10009
- [4] H. Hasse, Number Theory, Springer, Berlin, 1980.
- [5] S. Lang, Elliptic Functions, Addison-Wesley, 1973.
- [6] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585. Zbl0514.12003
- [7] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
- [8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.