Integer points on curves of genus 1
Compositio Mathematica (1992)
- Volume: 81, Issue: 1, page 33-59
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSchmidt, Wolfgang M.. "Integer points on curves of genus 1." Compositio Mathematica 81.1 (1992): 33-59. <http://eudml.org/doc/90132>.
@article{Schmidt1992,
author = {Schmidt, Wolfgang M.},
journal = {Compositio Mathematica},
keywords = {curves of genus 1; elliptic curves; integer points; height; Weierstrass curves},
language = {eng},
number = {1},
pages = {33-59},
publisher = {Kluwer Academic Publishers},
title = {Integer points on curves of genus 1},
url = {http://eudml.org/doc/90132},
volume = {81},
year = {1992},
}
TY - JOUR
AU - Schmidt, Wolfgang M.
TI - Integer points on curves of genus 1
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 1
SP - 33
EP - 59
LA - eng
KW - curves of genus 1; elliptic curves; integer points; height; Weierstrass curves
UR - http://eudml.org/doc/90132
ER -
References
top- [1] A. Baker: The diophantine equation y2=ax3+bx2+cx+d, J. London Math. Soc.43 (1968), 1-9. Zbl0155.08701MR231783
- [2] A. Baker: Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Phil. Soc.65 (1969), 439-444. Zbl0174.33803MR234912
- [3] A. Baker: The theory of linear forms in logarithms. Transcendence theory: Advances and applications, Proceedings of 1976 Cambridge Conference, Academic Press (1977), pp. 1-27. Zbl0361.10028MR498417
- [4] A. Baker and J. Coates: Integer points on curves of genus 1, Proc. Camb. Phil. Soc.67 (1970), 595-602. Zbl0194.07601MR256983
- [5] E. Bombieri and J. Vaaler: On Siegel's lemma, Invent. Math.73 (1983), 11-32. Zbl0533.10030MR707346
- [6] J. Coates: Construction of rational functions on a curve, Proc. Camb. Phil. Soc.68 (1970), 105-123. Zbl0215.37302MR258831
- [7] M. Deuring: Lectures on the theory of algebraic functions of one variable, Springer Lecture Notes314 (1973). Zbl0249.14008MR344231
- [8] E. Dobrowolski: On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith.34 (1979), 391-401. Zbl0416.12001MR543210
- [9] J.H. Evertse and J.H. Silverman: Uniform bounds for the number of solutions to Yn=f(X), Math. Proc. Camb. Phil. Soc.100 (1986), 237-248. Zbl0611.10009MR848850
- [10] K. Györy: On the solutions of linear diophantine equations in algebraic integers of bounded norm. Ann. Univ. Budapest, Eötvös, Sect. Math.22-23 (1979/80), 225-233. Zbl0442.10010MR588441
- [11] E. Hecke: Vorlesungen über die Theorie der Algebraischen Zahlen, Akademische Verlagsges, Leipzig (1923). JFM49.0106.10
- [12] S. Lang: Algebraic Numbers, Addison-Wesley Publ. Co. (1964). Zbl0211.38501MR160763
- [13] S. Lang: Fundamentals of Diophantine Geometry, Springer-Verlag (1983). Zbl0528.14013MR715605
- [14] P. Philippon and M. Waldschmidt: Lower Bounds for Linear Forms in Logarithms, (New advances in transcendence theory, 1986 symposium, Durham), Cambridge University Press (1988). Zbl0659.10037MR972007
- [15] W.M. Schmidt: Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith.56 (1990), 161-179. Zbl0659.12003MR1075642
- [16] W.M. Schmidt: Construction and estimation of bases in function fields, J. Number Theory (to appear). Zbl0764.11046MR1129568
- [17] C.L. Siegel (under the pseudoname X): The integer solutions of the equation y2=axn+bxn-1+...+k, J. London Math. Soc.1 (1926), 66-68. JFM52.0149.02
- [18] C.L. Siegel: Abschätzung von Einheiten, Nachr. Akad. d. Wiss.Göttingen, Math.-Phys. Kl. (1969), 71-86 (Collected Works, No. 88). Zbl0186.36703MR249395
- [19] J.H. Silverman: The arithmetic of elliptic curves, Springer Graduate Texts106 (1986). Zbl0585.14026MR817210
- [20] J.H. Silverman: Lower bounds for height functions, Duke Math. J.51 (1984), 395-403. Zbl0579.14035MR747871
- [21] V.G. Sprinžuk:Hyperelliptic diophantine equations and the number of ideal classes, Acta. Arith.30 (1976), 95-108 (in Russian). Zbl0335.10021MR417050
- [22] G. Wüstholz: A New Approach to Baker's Theorem on Linear Forms in Logarithms III, (New advances in transcendence theory, 1986 symposium, Durham), Cambridge University Press. Zbl0659.10036
Citations in EuDML Documents
top- Dimitrios Poulakis, Points entiers sur les courbes hyperelliptiques
- Dimitrios Poulakis, Points entiers sur les courbes de genre 0
- Dimitrios Poulakis, The number of solutions of the Mordell equation
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations
- J. Gebel, A. Pethő, H. G. Zimmer, Computing integral points on elliptic curves
- Roelof J. Stroeker, Benjamin M. M. de Weger, Solving elliptic diophantine equations: the general cubic case
- Dimitrios Poulakis, Estimation effective des points entiers d'une famille de courbes algébriques
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.