Thue equations with composite fields

Yuri Bilu; Guillaume Hanrot

Acta Arithmetica (1999)

  • Volume: 88, Issue: 4, page 311-326
  • ISSN: 0065-1036

How to cite

top

Yuri Bilu, and Guillaume Hanrot. "Thue equations with composite fields." Acta Arithmetica 88.4 (1999): 311-326. <http://eudml.org/doc/207249>.

@article{YuriBilu1999,
author = {Yuri Bilu, Guillaume Hanrot},
journal = {Acta Arithmetica},
keywords = {Lucas sequence; cyclotomic equations; Thue equation; lower bound for linear forms in elliptic logarithms; two-dimensional reduction; Lehmer sequence},
language = {eng},
number = {4},
pages = {311-326},
title = {Thue equations with composite fields},
url = {http://eudml.org/doc/207249},
volume = {88},
year = {1999},
}

TY - JOUR
AU - Yuri Bilu
AU - Guillaume Hanrot
TI - Thue equations with composite fields
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 4
SP - 311
EP - 326
LA - eng
KW - Lucas sequence; cyclotomic equations; Thue equation; lower bound for linear forms in elliptic logarithms; two-dimensional reduction; Lehmer sequence
UR - http://eudml.org/doc/207249
ER -

References

top
  1. [1] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. 
  2. [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
  3. [3] Yu. Bilu, Solving superelliptic Diophantine equations by the method of Gelfond-Baker, preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux 2, 1994. 
  4. [4] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. Zbl0867.11017
  5. [5] Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. Zbl0915.11065
  6. [6] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, submitted. Zbl0995.11010
  7. [7] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966. 
  8. [8] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, 1993. 
  9. [9] G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997. 
  10. [10] G. Hanrot, Solving Thue equations without the full unit group, Math. Comp., to appear. Zbl0937.11063
  11. [11] A. K. Lenstra, H. W. Lenstra, jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. Zbl0488.12001
  12. [12] A. Pethő, Computational methods for the resolution of Diophantine equations, in: R. A. Mollin (ed.), Number Theory: Proc. First Conf. Canad. Number Theory Assoc. (Banff, 1988), de Gruyter, 1990, 477-492. Zbl0704.11006
  13. [13] A. Pethő and B. M. M. de Weger, Products of prime powers in binary recurrence sequences, Part I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1987), 713-727. Zbl0623.10011
  14. [14] M. E. Pohst, Computational Algebraic Number Theory, DMV Sem. 21, Birkhäuser, Basel, 1993. 
  15. [15] M. E. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989. Zbl0685.12001
  16. [16] N. Smart, The solution of triangularly connected decomposable form equations, Math. Comp. 64 (1995), 819-840. Zbl0831.11027
  17. [17] C. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977. Zbl0366.12002
  18. [18] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
  19. [19] N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), 223-288. Zbl0773.11023
  20. [20] P. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888. Zbl0832.11009
  21. [21] B. M. M. de Weger, Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), 325-367. Zbl0625.10013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.