Thue equations with composite fields
Acta Arithmetica (1999)
- Volume: 88, Issue: 4, page 311-326
- ISSN: 0065-1036
Access Full Article
topHow to cite
topYuri Bilu, and Guillaume Hanrot. "Thue equations with composite fields." Acta Arithmetica 88.4 (1999): 311-326. <http://eudml.org/doc/207249>.
@article{YuriBilu1999,
author = {Yuri Bilu, Guillaume Hanrot},
journal = {Acta Arithmetica},
keywords = {Lucas sequence; cyclotomic equations; Thue equation; lower bound for linear forms in elliptic logarithms; two-dimensional reduction; Lehmer sequence},
language = {eng},
number = {4},
pages = {311-326},
title = {Thue equations with composite fields},
url = {http://eudml.org/doc/207249},
volume = {88},
year = {1999},
}
TY - JOUR
AU - Yuri Bilu
AU - Guillaume Hanrot
TI - Thue equations with composite fields
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 4
SP - 311
EP - 326
LA - eng
KW - Lucas sequence; cyclotomic equations; Thue equation; lower bound for linear forms in elliptic logarithms; two-dimensional reduction; Lehmer sequence
UR - http://eudml.org/doc/207249
ER -
References
top- [1] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
- [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
- [3] Yu. Bilu, Solving superelliptic Diophantine equations by the method of Gelfond-Baker, preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux 2, 1994.
- [4] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. Zbl0867.11017
- [5] Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. Zbl0915.11065
- [6] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, submitted. Zbl0995.11010
- [7] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
- [8] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, 1993.
- [9] G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997.
- [10] G. Hanrot, Solving Thue equations without the full unit group, Math. Comp., to appear. Zbl0937.11063
- [11] A. K. Lenstra, H. W. Lenstra, jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. Zbl0488.12001
- [12] A. Pethő, Computational methods for the resolution of Diophantine equations, in: R. A. Mollin (ed.), Number Theory: Proc. First Conf. Canad. Number Theory Assoc. (Banff, 1988), de Gruyter, 1990, 477-492. Zbl0704.11006
- [13] A. Pethő and B. M. M. de Weger, Products of prime powers in binary recurrence sequences, Part I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1987), 713-727. Zbl0623.10011
- [14] M. E. Pohst, Computational Algebraic Number Theory, DMV Sem. 21, Birkhäuser, Basel, 1993.
- [15] M. E. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989. Zbl0685.12001
- [16] N. Smart, The solution of triangularly connected decomposable form equations, Math. Comp. 64 (1995), 819-840. Zbl0831.11027
- [17] C. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977. Zbl0366.12002
- [18] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
- [19] N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), 223-288. Zbl0773.11023
- [20] P. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888. Zbl0832.11009
- [21] B. M. M. de Weger, Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), 325-367. Zbl0625.10013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.