How to explicitly solve a Thue-Mahler equation

N. Tzanakis; B. M. M. de Weger

Compositio Mathematica (1992)

  • Volume: 84, Issue: 3, page 223-288
  • ISSN: 0010-437X

How to cite

top

Tzanakis, N., and de Weger, B. M. M.. "How to explicitly solve a Thue-Mahler equation." Compositio Mathematica 84.3 (1992): 223-288. <http://eudml.org/doc/90185>.

@article{Tzanakis1992,
author = {Tzanakis, N., de Weger, B. M. M.},
journal = {Compositio Mathematica},
keywords = {algorithm; Thue-Mahler equation},
language = {eng},
number = {3},
pages = {223-288},
publisher = {Kluwer Academic Publishers},
title = {How to explicitly solve a Thue-Mahler equation},
url = {http://eudml.org/doc/90185},
volume = {84},
year = {1992},
}

TY - JOUR
AU - Tzanakis, N.
AU - de Weger, B. M. M.
TI - How to explicitly solve a Thue-Mahler equation
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 84
IS - 3
SP - 223
EP - 288
LA - eng
KW - algorithm; Thue-Mahler equation
UR - http://eudml.org/doc/90185
ER -

References

top
  1. [ACHP] A K. Agrawal, J. Coates, D. C. Hunt and A.J. van der Poorten, Elliptic curves of conductor 11, Math. Comput.35 (1980), 991-1002. Zbl0475.14031MR572871
  2. [Be] W.E.H. Berwick, Algebraic number-fields with two independent units, Proc. London Math. Soc.34 (1932), 360-378. Zbl0005.34203
  3. [BGMMS] J. Blass, A.M.W. Glass, D.K. Manski, D.B. Meronk and R.P. Steiner, Constants for lower bounds for linear forms in logarithms of algebraic numbers II. The homogeneous rational case, Acta Arith.55 (1990), 15-22. Zbl0709.11037MR1056111
  4. [Bi1] K.K. Billevič, On the units of algebraic fields of third and fourth degree (Russian), Mat. Sb.40, 82 (1956), 123-137. Zbl0078.02901MR88516
  5. [Bi2] K.K. Billevič, A theorem on the units of algebraic fields of nth degree, (Russian), Mat. Sb.64, 106 (1964), 145-152. MR163902
  6. [BS] Z.I. Borevich and I.R. Shafarevich, Number theory, Academic Press, New York, London, 1973. Zbl0145.04902
  7. [Bu1] J. Buchmann, The generalized Voronoi algorithm in totally real algebraic number fields, Eurocal '85, Linz1985, Vol. 2, Lecture Notes in Comput. Sci.204, Springer, Berlin, New York, 1985, pp. 479-486. Zbl0586.12004MR826578
  8. [Bu2] J. Buchmann, A generalization of Voronoi's unit algorithm I, J. Number Th.20 (1986), 177-191. Zbl0575.12005MR790781
  9. [Bu3] J. Buchmann, A generalization of Voronoi's unit algorithm II, J. Number Th.20 (1986), 192-209. Zbl0575.12005MR790782
  10. [Bu4] J. Buchmann, On the computation of units and class numbers by a generalization of Lagrange's algorithm, J. Number Th.26 (1987), 8-30. Zbl0615.12001MR883530
  11. [Bu5] J. Buchmann, The computation of the fundamental unit of totally complex quartic orders, Math. Comput.48 (1987), 39-54. Zbl0627.12004MR866097
  12. [DF] B.N. Delone and D.K. Faddeev, The theory of irrationalities of the third degree, Vol. 10, Transl. of Math. Monographs, Am. Math. Soc, Rhode Island, 1964. Zbl0133.30202MR160744
  13. [Ev] J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math.75 (1984), 561-584. Zbl0521.10015MR735341
  14. [FP] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput.44 (1985), 463-471. Zbl0556.10022MR777278
  15. [Ko] N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Springer Verlag, New York, 1977. Zbl0364.12015MR466081
  16. [LLL] A K. Lenstra, H. W. Lenstra jr. and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann.261 (1983), 515-534. Zbl0488.12001MR682664
  17. [Ma] K. Mahler, Zur Approximation algebraischer Zahlen, I: Über den grössten Primteiler binärer Formen, Math. Ann.107 (1933), 691-730. Zbl0006.10502MR1512822JFM59.0220.01
  18. [Na1] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Polish Scientific Publishers, Warszawa, 1974. Zbl0276.12002MR347767
  19. [Na2] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Polish Scientific Publishers, Warszawa, 1990. Zbl0717.11045MR1055830
  20. [PW] A. Pethö and B.M.M. de Weger, Products of prime powers in binary recurrence sequences I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comput.47 (1986), 713-727. Zbl0623.10011MR856715
  21. [PZ1] M. Pohst and H. Zassenhaus, On effective computation of fundamental units I, Math. Comput.38 (1982), 275-291. Zbl0493.12004MR637307
  22. [PZ2] M. Pohst, P. Weiler and H. Zassenhaus, On effective computation of fundamental units II, Math. Comput.38 (1982), 293-329. Zbl0493.12005MR637308
  23. [PZ3] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, Cambridge, 1989. Zbl0685.12001MR1033013
  24. [Sm] J. Graf von Schmettow, KANT - a tool for computations in algebraic number fields, A. Pethö, M. Pohst, H. C. Williams and H. G. Zimmer, eds., Computational Number Theory, Walter de Gruyter & Co., Berlin, 1991, pp. 321-330. Zbl0731.11070MR1151875
  25. [Sp] V.G. Sprindžuk, Classical diophantine equations in two unknowns (Russian), Nauka, Moskva, 1982. Zbl0523.10008MR685430
  26. [ST] T.N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge University Press, Cambridge, 1986. Zbl0606.10011MR891406
  27. [Th] A. Thue, Über Annäherungswerten algebraischer Zahlen, J. reine angew. Math.135 (1909), 284-305. JFM40.0265.01
  28. [TW1] N. Tzanakis and B.M.M. de Weger, On the practical solution of the Thue equation, J. Number Th.31 (1989), 99-132. Zbl0657.10014MR987566
  29. [TW2] N. Tzanakis and B.M.M. de Weger, Solving a specific Thue-Mahler equation, Math. Comput.57 (No. 196) (1991), 799-815. Zbl0738.11029MR1094961
  30. [TW3] N. Tzanakis and B.M.M. deWeger, "On the practical solution of the Thue-Mahler equation, A. Pethö, M. Pohst, H. C. Williams and H. G. Zimmer, eds., Computational Number Theory, Walter de Gruyter & Co., Berlin, 1991, pp. 289-294. Zbl0738.11030MR1151871
  31. [Wa] M. Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith.37 (1980), 257-283. Zbl0357.10017MR598881
  32. [dW1] B.M.M. de Weger, Algorithms for diophantine equations, CWI-Tract No. 65, Centre for Math. and Comp. Sci., Amsterdam, 1989. Zbl0687.10013MR1026936
  33. [dW2] B.M.M. de Weger, On the practical solution of Thue-Mahler equations, an outline, K. Györy and G. Halász, eds., Number Theory, Coll. Math. Soc. János Bolyai, Vol. 51, Budapest, 1990, pp. 1037-1050. Zbl0703.11014MR1058259
  34. [Yu1] Kunrui Yu, Linear forms in p-adic logarithms, Acta Arith.53 (1989), 107-186. Zbl0699.10050MR1027200
  35. [Yu2] Kunrui Yu, Linear forms in p-adic logarithms II, Compositio Math.74 (1990), 15-113. Zbl0723.11034MR1055245

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.