Strong arithmetic properties of the integral solutions of X³ + DY³ + D²Z³ - 3DXYZ = 1, where D = M³ ± 1, M ∈ ℤ*

Christian Ballot

Acta Arithmetica (1999)

  • Volume: 89, Issue: 3, page 259-277
  • ISSN: 0065-1036

How to cite

top

Christian Ballot. "Strong arithmetic properties of the integral solutions of X³ + DY³ + D²Z³ - 3DXYZ = 1, where D = M³ ± 1, M ∈ ℤ*." Acta Arithmetica 89.3 (1999): 259-277. <http://eudml.org/doc/207269>.

@article{ChristianBallot1999,
author = {Christian Ballot},
journal = {Acta Arithmetica},
keywords = {prime divisors; linear recurrence sequences; third order recurrences; Williams-Ballot sequences; Laxton-Ballot group; densities of maximal divisors},
language = {eng},
number = {3},
pages = {259-277},
title = {Strong arithmetic properties of the integral solutions of X³ + DY³ + D²Z³ - 3DXYZ = 1, where D = M³ ± 1, M ∈ ℤ*},
url = {http://eudml.org/doc/207269},
volume = {89},
year = {1999},
}

TY - JOUR
AU - Christian Ballot
TI - Strong arithmetic properties of the integral solutions of X³ + DY³ + D²Z³ - 3DXYZ = 1, where D = M³ ± 1, M ∈ ℤ*
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 3
SP - 259
EP - 277
LA - eng
KW - prime divisors; linear recurrence sequences; third order recurrences; Williams-Ballot sequences; Laxton-Ballot group; densities of maximal divisors
UR - http://eudml.org/doc/207269
ER -

References

top
  1. [Ba1] C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 551 (1995). 
  2. [Ba2] C. Ballot, Group structure and maximal division for cubic recursions with a double root, Pacific J. Math. 173 (1996), 337-355. Zbl0866.11007
  3. [Ba3] C. Ballot, The density of primes p, such that -1 is a residue modulo p of two consecutive Fibonacci numbers, is 2/3, Rocky Mountain J. Math., to appear. Zbl0979.11007
  4. [Ha] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a≠0 von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. 166 (1966), 19-23. Zbl0139.27501
  5. J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461; Errata: Pacific J. Math. 162 (1994), 393-396. Zbl0569.10003
  6. J. C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math. 27 (1983), 224-237. Zbl0507.12004
  7. [Lax] R. R. Laxton, On groups of linear recurrences I, Duke Math. J. 26 (1969), 721-736. Zbl0226.10010
  8. [Le1] D. H. Lehmer, On the multiple solutions of the Pell equation, Ann. of Math. (2) 30 (1929), 66-72. 
  9. [Le2] D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, J. London Math. Soc. 10 (1935), 162-165. Zbl0012.10301
  10. [Lu] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321. 
  11. [Ma] G. B. Mathews, On the arithmetical theory of the form x³ + ny³ + n²z³ - 3nxyz, Proc. London Math. Soc. 21 (1890), 280-287. Zbl22.0220.01
  12. [Mo] P. Moree, On the prime density of Lucas sequences, J. Théor. Nombres Bordeaux 8 (1996), 449-459. Zbl0873.11058
  13. [M-S] P. Moree and P. Stevenhagen, Prime divisors of Lucas sequences, Acta Arith. 82 (1997), 403-410. Zbl0913.11048
  14. [Na] T. Nagell, Über die Einheiten in reinen kubischen Zahlkörpern, Skr. Norske Vid. Akad. Oslo Mat.-Naturv. Klasse 11 (1923), 1-34. Zbl49.0111.03
  15. [Wa1] M. Ward, The maximal prime divisors of linear recurrences, Canad. J. Math. 6 (1954), 455-462. Zbl0056.04106
  16. [Wa2] M. Ward, The prime divisors of Fibonacci numbers, Pacific J. Math. 11 (1961), 379-386. Zbl0112.26904
  17. [We] A. E. Western, On Lucas's and Pepin's tests for primeness of Mersenne numbers, J. London Math. Soc. 7 (1932), 130-137. Zbl0004.24402
  18. [Wi1] H. C. Williams, A generalization of the Lucas functions, unpublished Ph.D. thesis, University of Waterloo, Waterloo, Ontario, 1969. 
  19. [Wi2] H. C. Williams, On a generalization of the Lucas functions, Acta Arith. 20 (1972), 33-51. Zbl0248.10011
  20. [Wi3] H. C. Williams, Edouard Lucas and Primality Testing, Canad. Math. Soc. Ser. Monographs Adv. Texts, Wiley, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.