On the prime density of Lucas sequences
Journal de théorie des nombres de Bordeaux (1996)
- Volume: 8, Issue: 2, page 449-459
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Ballot, Density of prime divisors of linear recurrences, Mem. of the Amer. Math. Soc.551, 1995. Zbl0827.11006MR1257079
- [2] F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory3 (1971), 412-443. Zbl0229.12006MR285511
- [3] H. Hasse, Uber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw., ungerader Ordnung mod. p ist, Math. Ann.166 (1966), 19-23. Zbl0139.27501MR205975
- [4] J.C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math.118 (1985), 449-461 (Errata, Pacific J. Math.162 (1994), 393-397). Zbl0569.10003MR789184
- [5] P. Moree, Counting divisors of Lucas numbers, MPI-preprint, no. 34, Bonn, 1996. MR1663806
- [6] R.W.K. Odoni, A conjecture of Krishnamurty on decimal periods and some allied problems, J. Number Theory13 (1981), 303-319. Zbl0471.10031MR634201
- [7] P. Ribenboim, The book of prime number records, Springer-Verlag, Berlin etc., 1988. Zbl0642.10001MR931080
- [8] P. Ribenboim, Catalan's conjecture, Academic Press, Boston etc., 1994. Zbl0824.11010MR1259738
- [9] P. Stevenhagen, The number of real quadratic fields having units of negative norm, Experimental Mathematics2 (1993), 121-136. Zbl0792.11041MR1259426
- [10] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith.43 (1984), 177-190. Zbl0531.10049MR736730