On the prime density of Lucas sequences

Pieter Moree

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 2, page 449-459
  • ISSN: 1246-7405

Abstract

top
The density of primes dividing at least one term of the Lucas sequence L n ( P ) n = 0 , defined by L 0 ( P ) = 2 , L 1 ( P ) = P and L n ( P ) = P L n - 1 ( P ) + L n - 2 ( P ) for n 2 , with P an arbitrary integer, is determined.

How to cite

top

Moree, Pieter. "On the prime density of Lucas sequences." Journal de théorie des nombres de Bordeaux 8.2 (1996): 449-459. <http://eudml.org/doc/247844>.

@article{Moree1996,
abstract = {The density of primes dividing at least one term of the Lucas sequence $\left\lbrace L_n(P)\right\rbrace _\{n =0\}^\infty $, defined by $L_0(P) = 2, L_1 (P) = P$ and $L_n(P) = PL_\{n-1\}(P) + L_\{n-2\}( P)$ for $n \ge 2$, with $P$ an arbitrary integer, is determined.},
author = {Moree, Pieter},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {prime density of Lucas sequences; real quadratic field},
language = {eng},
number = {2},
pages = {449-459},
publisher = {Université Bordeaux I},
title = {On the prime density of Lucas sequences},
url = {http://eudml.org/doc/247844},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Moree, Pieter
TI - On the prime density of Lucas sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 2
SP - 449
EP - 459
AB - The density of primes dividing at least one term of the Lucas sequence $\left\lbrace L_n(P)\right\rbrace _{n =0}^\infty $, defined by $L_0(P) = 2, L_1 (P) = P$ and $L_n(P) = PL_{n-1}(P) + L_{n-2}( P)$ for $n \ge 2$, with $P$ an arbitrary integer, is determined.
LA - eng
KW - prime density of Lucas sequences; real quadratic field
UR - http://eudml.org/doc/247844
ER -

References

top
  1. [1] C. Ballot, Density of prime divisors of linear recurrences, Mem. of the Amer. Math. Soc.551, 1995. Zbl0827.11006MR1257079
  2. [2] F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory3 (1971), 412-443. Zbl0229.12006MR285511
  3. [3] H. Hasse, Uber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw., ungerader Ordnung mod. p ist, Math. Ann.166 (1966), 19-23. Zbl0139.27501MR205975
  4. [4] J.C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math.118 (1985), 449-461 (Errata, Pacific J. Math.162 (1994), 393-397). Zbl0569.10003MR789184
  5. [5] P. Moree, Counting divisors of Lucas numbers, MPI-preprint, no. 34, Bonn, 1996. MR1663806
  6. [6] R.W.K. Odoni, A conjecture of Krishnamurty on decimal periods and some allied problems, J. Number Theory13 (1981), 303-319. Zbl0471.10031MR634201
  7. [7] P. Ribenboim, The book of prime number records, Springer-Verlag, Berlin etc., 1988. Zbl0642.10001MR931080
  8. [8] P. Ribenboim, Catalan's conjecture, Academic Press, Boston etc., 1994. Zbl0824.11010MR1259738
  9. [9] P. Stevenhagen, The number of real quadratic fields having units of negative norm, Experimental Mathematics2 (1993), 121-136. Zbl0792.11041MR1259426
  10. [10] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith.43 (1984), 177-190. Zbl0531.10049MR736730

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.