On the diameter of sets of almost powers
B. M. M. de Weger; C. E. van de Woestijne
Acta Arithmetica (1999)
- Volume: 90, Issue: 4, page 371-385
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] A. Baker, The theory of linear forms in logarithms, in: A. Baker and D. W. Masser (eds.), Transcendence Theory: Advances and Applications, London, 1977, 1-27.
- [2] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
- [3] M. A. Bennett, Simultaneous rational approximation to binomial functions, Trans. Amer. Math. Soc. 348 (1996), 1717-1738. Zbl0873.11042
- [4] G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382. Zbl0518.10038
- [5] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. Zbl0421.10019
- [6] M. M. Sweet, A theorem in Diophantine approximations, J. Number Theory 5 (1973), 245-251. Zbl0267.10044
- [7] J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157-166. Zbl0524.10037
- [8] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
- [9] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Centrum Wisk. Inform., Amsterdam, 1989, 19-26.
- [10] B. M. M. de Weger and C. E. van de Woestijne, On the power-free parts of consecutive integers, Acta Arith., this issue, 387-395. Zbl0971.11051