On the diameter of sets of almost powers

B. M. M. de Weger; C. E. van de Woestijne

Acta Arithmetica (1999)

  • Volume: 90, Issue: 4, page 371-385
  • ISSN: 0065-1036

How to cite

top

B. M. M. de Weger, and C. E. van de Woestijne. "On the diameter of sets of almost powers." Acta Arithmetica 90.4 (1999): 371-385. <http://eudml.org/doc/207334>.

@article{B1999,
author = {B. M. M. de Weger, C. E. van de Woestijne},
journal = {Acta Arithmetica},
keywords = {almost powers; upper and lower bounds; size of intervals; simultaneous rational approximation to algebraic numbers},
language = {eng},
number = {4},
pages = {371-385},
title = {On the diameter of sets of almost powers},
url = {http://eudml.org/doc/207334},
volume = {90},
year = {1999},
}

TY - JOUR
AU - B. M. M. de Weger
AU - C. E. van de Woestijne
TI - On the diameter of sets of almost powers
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 4
SP - 371
EP - 385
LA - eng
KW - almost powers; upper and lower bounds; size of intervals; simultaneous rational approximation to algebraic numbers
UR - http://eudml.org/doc/207334
ER -

References

top
  1. [1] A. Baker, The theory of linear forms in logarithms, in: A. Baker and D. W. Masser (eds.), Transcendence Theory: Advances and Applications, London, 1977, 1-27. 
  2. [2] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. 
  3. [3] M. A. Bennett, Simultaneous rational approximation to binomial functions, Trans. Amer. Math. Soc. 348 (1996), 1717-1738. Zbl0873.11042
  4. [4] G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382. Zbl0518.10038
  5. [5] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. Zbl0421.10019
  6. [6] M. M. Sweet, A theorem in Diophantine approximations, J. Number Theory 5 (1973), 245-251. Zbl0267.10044
  7. [7] J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157-166. Zbl0524.10037
  8. [8] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
  9. [9] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Centrum Wisk. Inform., Amsterdam, 1989, 19-26. 
  10. [10] B. M. M. de Weger and C. E. van de Woestijne, On the power-free parts of consecutive integers, Acta Arith., this issue, 387-395. Zbl0971.11051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.