On the diameter of sets of almost powers

B. M. M. de Weger; C. E. van de Woestijne

Acta Arithmetica (1999)

  • Volume: 90, Issue: 4, page 371-385
  • ISSN: 0065-1036

How to cite

top

B. M. M. de Weger, and C. E. van de Woestijne. "On the diameter of sets of almost powers." Acta Arithmetica 90.4 (1999): 371-385. <http://eudml.org/doc/207334>.

@article{B1999,
author = {B. M. M. de Weger, C. E. van de Woestijne},
journal = {Acta Arithmetica},
keywords = {almost powers; upper and lower bounds; size of intervals; simultaneous rational approximation to algebraic numbers},
language = {eng},
number = {4},
pages = {371-385},
title = {On the diameter of sets of almost powers},
url = {http://eudml.org/doc/207334},
volume = {90},
year = {1999},
}

TY - JOUR
AU - B. M. M. de Weger
AU - C. E. van de Woestijne
TI - On the diameter of sets of almost powers
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 4
SP - 371
EP - 385
LA - eng
KW - almost powers; upper and lower bounds; size of intervals; simultaneous rational approximation to algebraic numbers
UR - http://eudml.org/doc/207334
ER -

References

top
  1. [1] A. Baker, The theory of linear forms in logarithms, in: A. Baker and D. W. Masser (eds.), Transcendence Theory: Advances and Applications, London, 1977, 1-27. 
  2. [2] A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. 
  3. [3] M. A. Bennett, Simultaneous rational approximation to binomial functions, Trans. Amer. Math. Soc. 348 (1996), 1717-1738. Zbl0873.11042
  4. [4] G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382. Zbl0518.10038
  5. [5] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. Zbl0421.10019
  6. [6] M. M. Sweet, A theorem in Diophantine approximations, J. Number Theory 5 (1973), 245-251. Zbl0267.10044
  7. [7] J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157-166. Zbl0524.10037
  8. [8] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
  9. [9] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Centrum Wisk. Inform., Amsterdam, 1989, 19-26. 
  10. [10] B. M. M. de Weger and C. E. van de Woestijne, On the power-free parts of consecutive integers, Acta Arith., this issue, 387-395. Zbl0971.11051

NotesEmbed ?

top

You must be logged in to post comments.