Some families of finite groups and their rings of invariants

Stefan Kühnlein

Acta Arithmetica (1999)

  • Volume: 91, Issue: 2, page 133-146
  • ISSN: 0065-1036

How to cite

top

Stefan Kühnlein. "Some families of finite groups and their rings of invariants." Acta Arithmetica 91.2 (1999): 133-146. <http://eudml.org/doc/207344>.

@article{StefanKühnlein1999,
author = {Stefan Kühnlein},
journal = {Acta Arithmetica},
keywords = {polynomial degree property; finite group actions; ring of invariants; integers of an algebraic number field},
language = {eng},
number = {2},
pages = {133-146},
title = {Some families of finite groups and their rings of invariants},
url = {http://eudml.org/doc/207344},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Stefan Kühnlein
TI - Some families of finite groups and their rings of invariants
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 2
SP - 133
EP - 146
LA - eng
KW - polynomial degree property; finite group actions; ring of invariants; integers of an algebraic number field
UR - http://eudml.org/doc/207344
ER -

References

top
  1. [1] A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer, Berlin, 1994. Zbl0820.20060
  2. [2] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98. Zbl42.0136.01
  3. [3] L. E. Dickson, On invariants and the theory of numbers, The Madison Colloquium, 1913; repr. Dover, 1966. 
  4. [4] J.; F. Grunewald and J. Mennicke, Groups Acting on Hyperbolic Space, Springer, Berlin, 1997. Zbl0888.11001
  5. [5] F. Grunewald and D. Segal, On congruence topologies in number fields, J. Reine Angew. Math. 311/312 (1979), 389-396. Zbl0409.12005
  6. [6] K. Haberland, Perioden für Modulformen einer Variablen und Gruppencohomologie I, II, III, Math. Nachr. 112 (1983), 245-315. Zbl0526.10024
  7. [7] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699; also in: Mathematische Werke, Göttingen, 1959, 591-626. Zbl0014.01601
  8. [8] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058. Zbl0244.13012
  9. [9] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), 351-366. Zbl0889.13004
  10. [10] S. Kühnlein, Kohomologie spezieller S-arithmetischer Gruppen und Modulformen, Bonner Math. Schriften 264 (1994). 
  11. [11] S. Kühnlein, Torsion classes in cohomology and Galois representations, J. Number Theory 70 (1998), 184-190. Zbl0906.11022
  12. [12] S. Lang, Algebraic Number Theory, Springer, Berlin, 1993. 
  13. [13] P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions, Ann. of Math. Stud. 87, Princeton Univ. Press, 1976. Zbl0362.10022
  14. [14] P. Moree and P. Stevenhagen, Prime divisors of Lucas sequences, Acta Arith. 82 (1997), 403-410. Zbl0913.11048
  15. [15] D. Rosen, An arithmetic characterization of the parabolic points of G(2cosπ/5), Glasgow Math. J. 6 (1963), 88-96. Zbl0161.27501
  16. [16] B. J. Schmid, Finite groups and invariant theory, in: Séminaire d'Algèbre, P. Dubriel et M. P. Malliavin (eds.), Lecture Notes in Math. 1478, Springer, 1991, 35-66. Zbl0770.20004
  17. [17] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1994. Zbl0872.11023
  18. [18] L. Smith, Polynomial invariants of finite groups. A survey of recent developments, Bull. Amer. Math. Soc. 34 (1997), 211-250. Zbl0904.13004
  19. [19] T. Springer, Invariant Theory, Lecture Notes in Math. 585, Springer, Heidelberg, 1977. 
  20. [20] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-511. Zbl0497.20002
  21. [21] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1997. Zbl0966.11047
  22. [22] C. Wilkerson, A primer on Dickson invariants, Contemp. Math. 19 (1983), 421-434. Zbl0525.55013
  23. [23] D. Zagier, Zetafunktionen und quadratische Zahlkörper, Springer, Berlin, 1981. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.