Two identities related to Dirichlet character of polynomials

Weili Yao; Wenpeng Zhang

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 1, page 281-288
  • ISSN: 0011-4642

Abstract

top
Let q be a positive integer, χ denote any Dirichlet character mod q . For any integer m with ( m , q ) = 1 , we define a sum C ( χ , k , m ; q ) analogous to high-dimensional Kloosterman sums as follows: C ( χ , k , m ; q ) = a 1 = 1 q ' a 2 = 1 q ' a k = 1 q ' χ ( a 1 + a 2 + + a k + m a 1 a 2 a k ¯ ) , where a · a ¯ 1 mod q . The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value | C ( χ , k , m ; q ) | , and give two interesting identities for it.

How to cite

top

Yao, Weili, and Zhang, Wenpeng. "Two identities related to Dirichlet character of polynomials." Czechoslovak Mathematical Journal 63.1 (2013): 281-288. <http://eudml.org/doc/252470>.

@article{Yao2013,
abstract = {Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $~\@mod \;q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi , k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: \[ C(\chi , k, m; q)=\sum \_\{a\_1=1\}^\{q\}\{\}^\{\prime \} \sum \_\{a\_2=1\}^\{q\}\{\}^\{\prime \} \cdots \sum \_\{a\_k=1\}^\{q\}\{\}^\{\prime \} \chi (a\_1+a\_2+\cdots +a\_k+m\overline\{a\_1a\_2\cdots a\_k\}), \] where $a\cdot \overline\{a\}\equiv 1\;\@mod \;q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi , k, m; q)|$, and give two interesting identities for it.},
author = {Yao, Weili, Zhang, Wenpeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum; primitive character; Gauss sum; Kloosterman sum},
language = {eng},
number = {1},
pages = {281-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two identities related to Dirichlet character of polynomials},
url = {http://eudml.org/doc/252470},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Yao, Weili
AU - Zhang, Wenpeng
TI - Two identities related to Dirichlet character of polynomials
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 281
EP - 288
AB - Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $~\@mod \;q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi , k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: \[ C(\chi , k, m; q)=\sum _{a_1=1}^{q}{}^{\prime } \sum _{a_2=1}^{q}{}^{\prime } \cdots \sum _{a_k=1}^{q}{}^{\prime } \chi (a_1+a_2+\cdots +a_k+m\overline{a_1a_2\cdots a_k}), \] where $a\cdot \overline{a}\equiv 1\;\@mod \;q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi , k, m; q)|$, and give two interesting identities for it.
LA - eng
KW - Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum; primitive character; Gauss sum; Kloosterman sum
UR - http://eudml.org/doc/252470
ER -

References

top
  1. Burgess, D. A., 10.1112/plms/s3-13.1.537, Proc. Lond. Math. Soc., III. Ser. 13 (1963), 537-548. (1963) Zbl0118.04704MR0148627DOI10.1112/plms/s3-13.1.537
  2. Granville, A., Soundararajan, K., 10.1090/S0894-0347-06-00536-4, J. Am. Math. Soc. 20 (2007), 357-384. (2007) Zbl1210.11090MR2276774DOI10.1090/S0894-0347-06-00536-4
  3. Smith, R. A., 10.1016/0022-314X(79)90006-4, J. Number Theory 11 (1979), 324-343. (1979) Zbl0409.10024MR0544261DOI10.1016/0022-314X(79)90006-4
  4. Ye, Y., 10.4064/aa-93-3-221-235, Acta Arith. 93 (2000), 221-235. (2000) Zbl0953.11028MR1759916DOI10.4064/aa-93-3-221-235
  5. Zhang, W., Yi, Y., 10.1112/S0024609302001030, Bull. Lond. Math. Soc. 34 (2002), 469-473. (2002) Zbl1038.11052MR1897426DOI10.1112/S0024609302001030
  6. Zhang, W., Yao, W., 10.4064/aa115-3-3, Acta Arith. 115 (2004), 225-229. (2004) Zbl1076.11048MR2100501DOI10.4064/aa115-3-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.