Two identities related to Dirichlet character of polynomials
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 281-288
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYao, Weili, and Zhang, Wenpeng. "Two identities related to Dirichlet character of polynomials." Czechoslovak Mathematical Journal 63.1 (2013): 281-288. <http://eudml.org/doc/252470>.
@article{Yao2013,
abstract = {Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $~\@mod \;q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi , k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: \[ C(\chi , k, m; q)=\sum \_\{a\_1=1\}^\{q\}\{\}^\{\prime \} \sum \_\{a\_2=1\}^\{q\}\{\}^\{\prime \} \cdots \sum \_\{a\_k=1\}^\{q\}\{\}^\{\prime \} \chi (a\_1+a\_2+\cdots +a\_k+m\overline\{a\_1a\_2\cdots a\_k\}), \]
where $a\cdot \overline\{a\}\equiv 1\;\@mod \;q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi , k, m; q)|$, and give two interesting identities for it.},
author = {Yao, Weili, Zhang, Wenpeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum; primitive character; Gauss sum; Kloosterman sum},
language = {eng},
number = {1},
pages = {281-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two identities related to Dirichlet character of polynomials},
url = {http://eudml.org/doc/252470},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Yao, Weili
AU - Zhang, Wenpeng
TI - Two identities related to Dirichlet character of polynomials
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 281
EP - 288
AB - Let $q$ be a positive integer, $\chi $ denote any Dirichlet character $~\@mod \;q$. For any integer $m$ with $(m, q)=1$, we define a sum $C(\chi , k, m; q)$ analogous to high-dimensional Kloosterman sums as follows: \[ C(\chi , k, m; q)=\sum _{a_1=1}^{q}{}^{\prime } \sum _{a_2=1}^{q}{}^{\prime } \cdots \sum _{a_k=1}^{q}{}^{\prime } \chi (a_1+a_2+\cdots +a_k+m\overline{a_1a_2\cdots a_k}), \]
where $a\cdot \overline{a}\equiv 1\;\@mod \;q$. The main purpose of this paper is to use elementary methods and properties of Gauss sums to study the computational problem of the absolute value $|C(\chi , k, m; q)|$, and give two interesting identities for it.
LA - eng
KW - Dirichlet character of polynomials; sum analogous to Kloosterman sum; identity; Gauss sum; primitive character; Gauss sum; Kloosterman sum
UR - http://eudml.org/doc/252470
ER -
References
top- Burgess, D. A., 10.1112/plms/s3-13.1.537, Proc. Lond. Math. Soc., III. Ser. 13 (1963), 537-548. (1963) Zbl0118.04704MR0148627DOI10.1112/plms/s3-13.1.537
- Granville, A., Soundararajan, K., 10.1090/S0894-0347-06-00536-4, J. Am. Math. Soc. 20 (2007), 357-384. (2007) Zbl1210.11090MR2276774DOI10.1090/S0894-0347-06-00536-4
- Smith, R. A., 10.1016/0022-314X(79)90006-4, J. Number Theory 11 (1979), 324-343. (1979) Zbl0409.10024MR0544261DOI10.1016/0022-314X(79)90006-4
- Ye, Y., 10.4064/aa-93-3-221-235, Acta Arith. 93 (2000), 221-235. (2000) Zbl0953.11028MR1759916DOI10.4064/aa-93-3-221-235
- Zhang, W., Yi, Y., 10.1112/S0024609302001030, Bull. Lond. Math. Soc. 34 (2002), 469-473. (2002) Zbl1038.11052MR1897426DOI10.1112/S0024609302001030
- Zhang, W., Yao, W., 10.4064/aa115-3-3, Acta Arith. 115 (2004), 225-229. (2004) Zbl1076.11048MR2100501DOI10.4064/aa115-3-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.