# Automatic control of mechatronic systems

International Journal of Applied Mathematics and Computer Science (2001)

- Volume: 11, Issue: 1, page 131-164
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topSchlacher, Kurt, and Kugi, Andreas. "Automatic control of mechatronic systems." International Journal of Applied Mathematics and Computer Science 11.1 (2001): 131-164. <http://eudml.org/doc/207497>.

@article{Schlacher2001,

abstract = {This contribution deals with different concepts of nonlinear control for mechatronic systems. Since most physical systems are nonlinear in nature, it is quite obvious that an improvement in the performance of the closed loop can often be achieved only by means of control techniques that take the essential nonlinearities into consideration. Nevertheless, it can be observed that industry often hesitates to implement these nonlinear controllers, despite all advantages existing from the theoretical point of view. On the basis of three different applications, a PWM-controlled dc-to-dc converter, namely the 'Cuk-converter, the problem of hydraulic gap control in steel rolling, and the design of smart structures with piezolelectric sensor and actuator layers, we will demonstrate how one can overcome these problems by exploiting the physical structure of the mathematical models of the considered plants.},

author = {Schlacher, Kurt, Kugi, Andreas},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {nonlinear-control; inputoutput linearization; mechatronic systems; passivity; differential geometry; nonlinear -control; input-output linearization; nonlinear control; applications; physical structure; mathematical models},

language = {eng},

number = {1},

pages = {131-164},

title = {Automatic control of mechatronic systems},

url = {http://eudml.org/doc/207497},

volume = {11},

year = {2001},

}

TY - JOUR

AU - Schlacher, Kurt

AU - Kugi, Andreas

TI - Automatic control of mechatronic systems

JO - International Journal of Applied Mathematics and Computer Science

PY - 2001

VL - 11

IS - 1

SP - 131

EP - 164

AB - This contribution deals with different concepts of nonlinear control for mechatronic systems. Since most physical systems are nonlinear in nature, it is quite obvious that an improvement in the performance of the closed loop can often be achieved only by means of control techniques that take the essential nonlinearities into consideration. Nevertheless, it can be observed that industry often hesitates to implement these nonlinear controllers, despite all advantages existing from the theoretical point of view. On the basis of three different applications, a PWM-controlled dc-to-dc converter, namely the 'Cuk-converter, the problem of hydraulic gap control in steel rolling, and the design of smart structures with piezolelectric sensor and actuator layers, we will demonstrate how one can overcome these problems by exploiting the physical structure of the mathematical models of the considered plants.

LA - eng

KW - nonlinear-control; inputoutput linearization; mechatronic systems; passivity; differential geometry; nonlinear -control; input-output linearization; nonlinear control; applications; physical structure; mathematical models

UR - http://eudml.org/doc/207497

ER -

## References

top- Fleck N.A., Johnson K.L., Mear M.E. and Zhang L.C. (1992): Cold rolling of foil. - Proc. Instn. Mech. Engrs., Part B: J.Engineering Manufacture, Vol.206, pp.119-131.
- Frankel T. (1997): The Geometry of Physics. - Cambridge: Cambridge University Press. Zbl0888.58077
- Gurtin M. (1981): Topics in Finite Elasticity. - CBMSNSFConf. Series 35, SIAM, Philadelphia. Zbl0486.73030
- Hensel A. and Spittel T. (1990): Kraft- und Arbeitsbedarfbildsamer Formgebungsverfahren. -Leipzig: Deutscher Verlag fur Grundstoffindustrie.
- Isidori A. (1996): Nonlinear Control Systems. - London: Springer. Zbl0886.93024
- Isidori A. and Astolfi A. (1992): Disturbance attenuation and H_ifty-control via measurement feedback in nonlinear systems. - IEEETrans. Automat. Contr., Vol.37, No.9, pp.1283-1293. Zbl0755.93043
- Kassakian J.G., Schlecht M.F., Verghese G.C. (1992): Principles of Power Electronics. - New York: Addison Wesley.
- Khalil H.K. (1992): Nonlinear Systems. - New York: Macmillan Publishing Company. Zbl0969.34001
- Knobloch H.W., Isidori A. and Flockerzi D. (1993): Topics in Control Theory. - DMV Seminar Band 22, Basee: Birkhauser. Zbl0789.93073
- Kugi A. (2000): Non-linear Control Based on Physical Models. -Lecture Notes in Control and Information Sciences 260, London: Springer. Zbl0965.93003
- Kugi A. and Schlacher K. (1999): Nonlinear H_ifty-controller design for a DC-to-DC power converter. - IEEE Trans. Contr.Syst. Techn., Vol.7, No.2, pp.230-237.
- Kugi A., Schlacher K. and Irschik H. (1999a): Infinitedimensional control of nonlinear beam vibrations by piezoelectric actuator andsensor layers. - Nonlin. Dynam., Vol.66, pp.267-269. Zbl0948.74037
- Kugi A., Schlacher K. and Keintzel G. (1999b): Position Controland Active Eccentricity Compensation in Rolling Mills. - Automatisierungstechnik, Oldenbourg, Vol.47, No.8, pp.342-349.
- Lee C.-K. and Moon F.C. (1990): Modal sensorsactuators. - J.Appl. Mech., Trans. ASME, Vol.57, pp.434-441.
- Marsden J.E. and Hughes T.J. (1994): Mathematical Foundationsof Elasticity. - New York: Dover Publications.
- Merritt H.E. (1967): Hydraulic Control Systems. - New York: Wiley.
- Mohan N., Undeland T.M. and Robbins W.P. (1989): Power Electronics: Converters, Applications, and Design. - New York: Wiley.
- Nijmeijer H. and van der Schaft A.J. (1991): Nonlinear Dynamical Control Systems. - New York: Springer. Zbl0701.93001
- Nowacki W. (1975): Dynamic Problems of Thermoelasticity. -Warsaw: Noordhoff Int. Publishing, PWN-Polish Scientific Publishers. Zbl0364.73001
- Olver P.J. (1993): Applications of Lie Groups to Differential Equations. - New York: Springer. Zbl0785.58003
- Sastry S. (1999): Nonlinear Systems. - New York: Springer. Zbl0924.93001
- Schlacher K. (1998): Mathematical strategies common to mechanics and control. - Zeitschrift fur angewandte Mathematik und Mechanik, ZAMM, No.78, pp.723-730. Zbl1080.93500
- Schlacher K. and Kugi A. (2000): Control of mechanical structures by piezoelectric actuators and sensors, In: Stability and Stabilization of Nonlinear Systems (Aeyels D., Lamnabhi-Lagarrigue F., van der Schaft A., Eds.). -London: Springer, pp.275-292. Zbl0934.93051
- Schlacher K., Irschik H. and Kugi A. (1996): Control of nonlinear beam vibrations by multiple piezoelectric layers, In: Proc. IUTAM Symp. Interaction between Dynamics and Control in Advanced Mechanical Systems (van Campen D.H., Ed.). - Dordrecht: Kluwer, pp.355-363. Zbl0948.74037
- Sira Ramirez H. (1989): A geometric approach topulse-width modulated control in nonlinear dynamical systems. - IEEE Trans. Automat. Contr., Vol.34, No.2, pp.184-187. Zbl0664.93015
- Tzou H.S. (1992): Active piezoelectric shell continua, In: Intelligent Structural Systems (Tzou H.S. and Anderson G.L., Eds.). - Dordrecht: Kluwer, pp.9-74.
- van der Schaft A.J. (1993): Nonlinear state space H_∞ control theory, In: Essays on Control: Perspectives inthe Theory and its Applications (Trentelman H.L. and Willems J.C., Eds.). -Boston: Birkhauser, pp.153-190.
- van der Schaft A.J. (2000): L_2 -Gain and Passivity Techniques in Nonlinear Control. - London: Springer. Zbl0937.93020

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.