Displaying similar documents to “Automatic control of mechatronic systems”

Modeling and control of induction motors

Emmanuel Delaleau, Jean-Paul Louis, Romeo Ortega (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper is devoted to the modeling and control of the induction motor. The well-established field oriented control is recalled and two recent control strategies are exposed, namely the passivity-based control and the flatness-based control.

Tracking control algorithms for a laboratory aerodynamical system

Przemysław Gorczyca, Krystyn Hajduk (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

The tracking control problem of a strongly nonlinear MIMO system is presented. The system shares some features with a helicopter, such as important interactions between the vertical and horizontal motions. The dedicated IO board allows for control, measurements and communication with a PC. The RTWT toolbox in the MATLAB environment is used to perform real-time experiments. The control task is to track a predefined reference trajectory. A mathematical model of the system, containing experimental...

Control of an induction motor using sliding mode linearization

Erik Etien, Sébastien Cauet, Laurent Rambault, Gérard Champenois (2002)

International Journal of Applied Mathematics and Computer Science

Similarity:

Nonlinear control of the squirrel induction motor is designed using sliding mode theory. The developed approach leads to the design of a sliding mode controller in order to linearize the behaviour of an induction motor. The second problem described in the paper is decoupling between two physical outputs: the rotor speed and the rotor flux modulus. The sliding mode tools allow us to separate the control from these two outputs. To take account of parametric variations, a model-based approach...

Feedback linearization idle-speed control: design and experiments

Rolf Pfiffner, Lino Guzzella (1999)

Kybernetika

Similarity:

This paper proposes a novel nonlinear control algorithm for idle-speed control of a gasoline engine. This controller is based on the feedback linearization approach and extends this technique to the special structure and specifications of the idle-speed problem. Special static precompensations and cascaded loops are used to achieve the desired bandwidth separation between the fast spark and slow air-bypass action. A key element is the inclusion of the (engine-speed dependent) induction...