Approximation of a solidification problem
Rajae Aboulaïch; Ilham Haggouch; Ali Souissi
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 4, page 921-955
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topAboulaïch, Rajae, Haggouch, Ilham, and Souissi, Ali. "Approximation of a solidification problem." International Journal of Applied Mathematics and Computer Science 11.4 (2001): 921-955. <http://eudml.org/doc/207538>.
@article{Aboulaïch2001,
abstract = {A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L^2 -rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more efficient compared with the others.},
author = {Aboulaïch, Rajae, Haggouch, Ilham, Souissi, Ali},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {free boundary; shape optimization; finite-element method; Euler method; Stefan problem; finite element method},
language = {eng},
number = {4},
pages = {921-955},
title = {Approximation of a solidification problem},
url = {http://eudml.org/doc/207538},
volume = {11},
year = {2001},
}
TY - JOUR
AU - Aboulaïch, Rajae
AU - Haggouch, Ilham
AU - Souissi, Ali
TI - Approximation of a solidification problem
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 4
SP - 921
EP - 955
AB - A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L^2 -rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more efficient compared with the others.
LA - eng
KW - free boundary; shape optimization; finite-element method; Euler method; Stefan problem; finite element method
UR - http://eudml.org/doc/207538
ER -
References
top- Baiocchi C., Comincioli V., Magenes E. and Pozzi G.A.(1973): Free boundary problems in the theory of fluid flow through porousmedia. Existence and uniqueness theorems. - Annali Mat. Pura App., Vol.4, No.97, pp.1-82. Zbl0343.76036
- Baiocchi C. (1977): Problèmes à frontière libre en hydraulique: milieu non homogène. - Annali della Scuola Norm. Sup. di Pisa, Vol.28, pp.429-453. Zbl0386.35044
- Ciavaldini J.F. (1972): Resolution numerique d'un problème de Stefan à deux phases. - Ph.D. Thesis, Rennes, France.
- El Bagdouri M. (1987): Commande optimale d'un système thermique non-lineaire. - Thèse de Doctorat d'Etates-Sciences, Ecole Nationale Superieure de Mecanique, Universite de Nantes.
- Haggouch I. (1997): Resolution d'un problème de Stefan à deux phases par la methode d'optimisation de forme. - Ph.D. Thesis, Rabat, Morocco.
- Haslinger J. and Neittaanmaki P. (1988): Finite Element Approximation for Optimal Shape Design. Theory and Application. - New York: Wiley. Zbl0713.73062
- Humeau J.P. and Souza del Cursi J.E. (1993): Regularisation and numerical resolution of a two-dimensional Stefan problem. - J. Math. Syst. Estim. Contr., Vol.3, No.4, pp.473-497. Zbl0800.93598
- Lions J.L. (1968): Contrôle Optimal d'un Système Gouverne par des Equations aux Derivees Partielles. - Paris: Dunod.
- Lions J.L. (1969): Quelques Methodes de Resolution des Problèmes aux Limites Non Lineaires. - Paris: Dunod. Zbl0189.40603
- Lyaghfouri A. (1996): The inhomogeneous dam with linear Darcy's law and Dirichlet boundary conditions. - Math. Models Meth. Appl. Sci., Vol.6, No.8, pp.1051-1077. Zbl0869.76088
- Nochetto R.H., Paolin M. and Verdi C. (1991): Anadaptive finite element method for two phase Stefan problems in two space dimension, Part 1: Stability and error estimates. - Math. Comp., Vol.57, No.57, pp.73-108, S1-S11 (supplement); Part 2: Implementation and Numerical Experiments. - SIAM J. Sci.Stat. Comput., Vol.12, No.5, pp.1207-1244.
- Peneau S. (1995): Contrôle optimal et optimisation de forme dans des problèmes à frontière libre. Application à un système thermique avec changement de phase. - Ph.D., Ecole Central de Nantes, France.
- Pironneau O. (1983): Optimal Shape Design for Elliptic Systems. - Berlin: Springer. Zbl0496.93029
- Raviart P.A. and Girault V. (1981): Finite Element Approximation of the Navier-Stokes Equations. - Berlin: Springer. Zbl0441.65081
- Rodrigues J.F. (1980): Sur la cristallisation d'un métal en coulée continue par des méthodes variationnelles. - Ph.D. Thesis, Universite Paris 6.
- Saguez C. (1980): Contrôle optimal de systèmes à frontière libre. - Ph.D. Thesis, Université de Technologie de Compiègne, France. Zbl0439.73076
- Srunk and Friedman A. (1994): Variational and Free Boundary Problems. - Berlin: Springer.
- Zolésio J.P. (1981): The material derivative (or speed method) for shape optimisation, In: Optimisation of Parameter Structures, Vol.II (E.J. Haug and J. Cea, Eds.). - Alphen aan den Rijn, the Netherlands: Sijthoff, pp.1098-1151.
- Zolésio J.P. (1979): Identification de domaines par déformations. - Thèse d'Etat, Université de Nice, France.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.