Approximation of a solidification problem

Rajae Aboulaïch; Ilham Haggouch; Ali Souissi

International Journal of Applied Mathematics and Computer Science (2001)

  • Volume: 11, Issue: 4, page 921-955
  • ISSN: 1641-876X

Abstract

top
A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L^2 -rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more efficient compared with the others.

How to cite

top

Aboulaïch, Rajae, Haggouch, Ilham, and Souissi, Ali. "Approximation of a solidification problem." International Journal of Applied Mathematics and Computer Science 11.4 (2001): 921-955. <http://eudml.org/doc/207538>.

@article{Aboulaïch2001,
abstract = {A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L^2 -rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more efficient compared with the others.},
author = {Aboulaïch, Rajae, Haggouch, Ilham, Souissi, Ali},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {free boundary; shape optimization; finite-element method; Euler method; Stefan problem; finite element method},
language = {eng},
number = {4},
pages = {921-955},
title = {Approximation of a solidification problem},
url = {http://eudml.org/doc/207538},
volume = {11},
year = {2001},
}

TY - JOUR
AU - Aboulaïch, Rajae
AU - Haggouch, Ilham
AU - Souissi, Ali
TI - Approximation of a solidification problem
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 4
SP - 921
EP - 955
AB - A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L^2 -rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more efficient compared with the others.
LA - eng
KW - free boundary; shape optimization; finite-element method; Euler method; Stefan problem; finite element method
UR - http://eudml.org/doc/207538
ER -

References

top
  1. Baiocchi C., Comincioli V., Magenes E. and Pozzi G.A.(1973): Free boundary problems in the theory of fluid flow through porousmedia. Existence and uniqueness theorems. - Annali Mat. Pura App., Vol.4, No.97, pp.1-82. Zbl0343.76036
  2. Baiocchi C. (1977): Problèmes à frontière libre en hydraulique: milieu non homogène. - Annali della Scuola Norm. Sup. di Pisa, Vol.28, pp.429-453. Zbl0386.35044
  3. Ciavaldini J.F. (1972): Resolution numerique d'un problème de Stefan à deux phases. - Ph.D. Thesis, Rennes, France. 
  4. El Bagdouri M. (1987): Commande optimale d'un système thermique non-lineaire. - Thèse de Doctorat d'Etates-Sciences, Ecole Nationale Superieure de Mecanique, Universite de Nantes. 
  5. Haggouch I. (1997): Resolution d'un problème de Stefan à deux phases par la methode d'optimisation de forme. - Ph.D. Thesis, Rabat, Morocco. 
  6. Haslinger J. and Neittaanmaki P. (1988): Finite Element Approximation for Optimal Shape Design. Theory and Application. - New York: Wiley. Zbl0713.73062
  7. Humeau J.P. and Souza del Cursi J.E. (1993): Regularisation and numerical resolution of a two-dimensional Stefan problem. - J. Math. Syst. Estim. Contr., Vol.3, No.4, pp.473-497. Zbl0800.93598
  8. Lions J.L. (1968): Contrôle Optimal d'un Système Gouverne par des Equations aux Derivees Partielles. - Paris: Dunod. 
  9. Lions J.L. (1969): Quelques Methodes de Resolution des Problèmes aux Limites Non Lineaires. - Paris: Dunod. Zbl0189.40603
  10. Lyaghfouri A. (1996): The inhomogeneous dam with linear Darcy's law and Dirichlet boundary conditions. - Math. Models Meth. Appl. Sci., Vol.6, No.8, pp.1051-1077. Zbl0869.76088
  11. Nochetto R.H., Paolin M. and Verdi C. (1991): Anadaptive finite element method for two phase Stefan problems in two space dimension, Part 1: Stability and error estimates. - Math. Comp., Vol.57, No.57, pp.73-108, S1-S11 (supplement); Part 2: Implementation and Numerical Experiments. - SIAM J. Sci.Stat. Comput., Vol.12, No.5, pp.1207-1244. 
  12. Peneau S. (1995): Contrôle optimal et optimisation de forme dans des problèmes à frontière libre. Application à un système thermique avec changement de phase. - Ph.D., Ecole Central de Nantes, France. 
  13. Pironneau O. (1983): Optimal Shape Design for Elliptic Systems. - Berlin: Springer. Zbl0496.93029
  14. Raviart P.A. and Girault V. (1981): Finite Element Approximation of the Navier-Stokes Equations. - Berlin: Springer. Zbl0441.65081
  15. Rodrigues J.F. (1980): Sur la cristallisation d'un métal en coulée continue par des méthodes variationnelles. - Ph.D. Thesis, Universite Paris 6. 
  16. Saguez C. (1980): Contrôle optimal de systèmes à frontière libre. - Ph.D. Thesis, Université de Technologie de Compiègne, France. Zbl0439.73076
  17. Srunk and Friedman A. (1994): Variational and Free Boundary Problems. - Berlin: Springer. 
  18. Zolésio J.P. (1981): The material derivative (or speed method) for shape optimisation, In: Optimisation of Parameter Structures, Vol.II (E.J. Haug and J. Cea, Eds.). - Alphen aan den Rijn, the Netherlands: Sijthoff, pp.1098-1151. 
  19. Zolésio J.P. (1979): Identification de domaines par déformations. - Thèse d'Etat, Université de Nice, France. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.