# Computing generalized inverse systems using matrix pencil methods

International Journal of Applied Mathematics and Computer Science (2001)

- Volume: 11, Issue: 5, page 1055-1068
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topVarga, Andras. "Computing generalized inverse systems using matrix pencil methods." International Journal of Applied Mathematics and Computer Science 11.5 (2001): 1055-1068. <http://eudml.org/doc/207545>.

@article{Varga2001,

abstract = {We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil to appropriate Kronecker-like forms.},

author = {Varga, Andras},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {descriptor systems; system inversion; numerical methods; rational matrices; pseudoinverses; matrix pencils},

language = {eng},

number = {5},

pages = {1055-1068},

title = {Computing generalized inverse systems using matrix pencil methods},

url = {http://eudml.org/doc/207545},

volume = {11},

year = {2001},

}

TY - JOUR

AU - Varga, Andras

TI - Computing generalized inverse systems using matrix pencil methods

JO - International Journal of Applied Mathematics and Computer Science

PY - 2001

VL - 11

IS - 5

SP - 1055

EP - 1068

AB - We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil to appropriate Kronecker-like forms.

LA - eng

KW - descriptor systems; system inversion; numerical methods; rational matrices; pseudoinverses; matrix pencils

UR - http://eudml.org/doc/207545

ER -

## References

top- Antsaklis P. (1978): Stable proper nth-order inverses. — IEEE Trans. Automat. Contr., Vol.23, No.6, pp.1104–1106. Zbl0388.93023
- Ben Israel A. and Greville T.N.E. (1976): Some topics in generalized inverses of matrices, In: Generalized Inverses and Applications (M.Z. Nashed, Ed.). — New York: Academic Press, pp.125–147. Zbl0345.15002
- Benner P., Mehrmann V., Sima V., Van Huffel S. and Varga A. (1999): SLICOT—A subroutine library in systems and control theory, In: Applied and Computational Control, Signals and Circuits (B.N. Datta, Ed.). — Boston: Birkhäuser, Vol.1, pp.499–539. Zbl1051.93500
- Campbell S.L. and Meyer C.D. (1991): Generalized Inverses of Linear Transformations. — New York: Dover Publications, Inc. Zbl0732.15003
- Campbell S.L. and Rakowski M. (1994): Explicit formulae for completions of linear time varying DAEs. — Circ. Syst. Signal Process., Vol.13, No.2–3, pp.185–199. Zbl0804.34002
- Misra P., Van Dooren P. and Varga A. (1994): Computation of structural invariants of generalized state-space systems. — Automatica, Vol.30, No.12, pp.1921–1936. Zbl0816.93040
- Morse A.S. (1976): Minimal solutions to transfer matrix equations. — IEEE Trans. Automat. Contr., Vol.21, No.1, pp.131–133. Zbl0321.93012
- Oară C. and Varga A. (1999): The general inner-outer factorization problem for discrete-time systems. — Proc. ECC’99, Karlsruhe, Germany, (published on CD-ROM). Zbl0971.65057
- Oară C. and Varga A. (2000): Computation of general inner-outer and spectral factorizations. — IEEE Trans. Automat. Contr., Vol.45, No.12, pp.2307–2325. Zbl0990.93019
- Oară C. (2000): A QR factorization of a rational matrix: The class of solutions and applications in systems theory. — Proc. MTNS 2000, Perpignan, France (published on CD-ROM).
- Rakowski M. (1991): Generalized pseudoinverses of matrix valued functions. — Int. Eqns. Oper. Theory, Vol.14, No.4, pp.564–585. Zbl0735.15003
- Sontag E. (1980): On generalized inverses of polynomial and other matrices. — IEEE Trans. Automat. Contr., Vol.25, No.3, pp.514–517. Zbl0447.15003
- Varga A. (1995): On stabilization of descriptor systems. — Syst. Contr. Lett., Vol.24, No.2, pp.133–138. Zbl0877.93092
- Varga A. (1996): Computation of Kronecker-like forms of a system pencil: Applications, algorithms and software. — Proc. CACSD’96 Symposium, Dearborn, MI, pp.77–82.
- Varga A. (1998): Computation of inner-outer factorizations of rational matrices. — IEEE Trans. Automat. Contr., Vol.43, No.5, pp.684–688. Zbl0907.65020
- Varga A. (2000): A descriptor systems toolbox for Matlab. — Proc. CACSD 2000 Symposium, Anchorage, Alaska.
- Varga A. and Katayama T. (1998): Computation of J-inner-outer factorizations of rational matrices. — Int. J. Robust Nonlin. Contr., Vol.8, No.3, pp.245–263. Zbl0910.93029
- Wang S.-H. and Davison E.J. (1973): A minimization algorithm for the design of linear multivariable systems. — IEEE Trans. Automat. Contr., Vol.18, No.3, pp.220–225. Zbl0261.93010
- Wolovich W.A., Antsaklis P. and Elliott H. (1977): On the stability of solutions to minimal and nonminimal design problems. — IEEE Trans. Automat. Contr., Vol.22, No.1, pp.88– 94. Zbl0346.93037
- Wonham W.M. (1979): Linear Multivariable Control: a Geometric Approach. — New York: Springer Verlag. Zbl0424.93001

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.