On the discrete time-varying JLQG problem
Adam Czornik; Andrzej Świerniak
International Journal of Applied Mathematics and Computer Science (2002)
- Volume: 12, Issue: 2, page 203-207
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topCzornik, Adam, and Świerniak, Andrzej. "On the discrete time-varying JLQG problem." International Journal of Applied Mathematics and Computer Science 12.2 (2002): 203-207. <http://eudml.org/doc/207580>.
@article{Czornik2002,
abstract = {In the present paper optimal time-invariant state feedback controllers are designed for a class of discrete time-varying control systems with Markov jumping parameter and quadratic performance index. We assume that the coefficients have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Moreover, following the same line of reasoning, an adaptive controller is proposed in the case when system parameters are unknown but their strongly consistent estimators are available.},
author = {Czornik, Adam, Świerniak, Andrzej},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {time-varying systems; coupled Riccati equations; jump linear systems; optimal control; adaptive control},
language = {eng},
number = {2},
pages = {203-207},
title = {On the discrete time-varying JLQG problem},
url = {http://eudml.org/doc/207580},
volume = {12},
year = {2002},
}
TY - JOUR
AU - Czornik, Adam
AU - Świerniak, Andrzej
TI - On the discrete time-varying JLQG problem
JO - International Journal of Applied Mathematics and Computer Science
PY - 2002
VL - 12
IS - 2
SP - 203
EP - 207
AB - In the present paper optimal time-invariant state feedback controllers are designed for a class of discrete time-varying control systems with Markov jumping parameter and quadratic performance index. We assume that the coefficients have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Moreover, following the same line of reasoning, an adaptive controller is proposed in the case when system parameters are unknown but their strongly consistent estimators are available.
LA - eng
KW - time-varying systems; coupled Riccati equations; jump linear systems; optimal control; adaptive control
UR - http://eudml.org/doc/207580
ER -
References
top- Abou-Kandil H., Freiling G. and Jank G. (1994): Solution and asymptotic behavior of coupled Riccati equations in jump linear systems. -IEEE Trans. Automat. Contr., Vol. 39, No. 8, pp. 1631-1636. Zbl0925.93387
- Abou-Kandil H., Freiling G. and Jank G. (1995): On the solution of discrete-time Markovian jump linear quadratic control problems. -Automatica, Vol. 31, No. 5, pp. 765-768. Zbl0822.93074
- Caines P.E. and Zhang J.F. (1995): On adaptive control of jump parameter systems via nonlinear filtrating. - SIAM J. Contr.Optim., Vol. 33, No. 6, pp. 1758-1777. Zbl0843.93076
- Costa O.L.V. and Fragoso M.D. (1995): Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems. - IEEE Trans. Automat. Contr., Vol. 40, No. 12, pp. 2076-2088. Zbl0843.93091
- Chizeck H.J., Willsky A.S. and Castanon D. (1986): Discrete-time Markovian-jump linear quadratic optimal control. - Int. J. Contr., Vol. 43, No. 1, pp. 213-231. Zbl0591.93067
- Czornik A. (1998): On time-varying LQG. - Prep. IFACConf. System Structure and Control, France, Nantes, pp. 427-432.
- Czornik A. (1999): On discrete-time linear quadratic-control. -Syst. Contr. Lett., Vol. 36, No. 2, pp. 101-107. Zbl0914.93068
- Czornik A. (2000): Continuity of the solution of the Riccati equations for continuous time JLQP. - IEEE Trans. Automat. Contr., Vol. 45, No. 5, pp. 934-937. Zbl0977.34062
- Czornik A. (2002): Adaptive control for jump linear system with quadratic cost. - Int. J. Adapt. Contr. Signal Process., (submitted). Zbl1121.49034
- Czornik A. and Świerniak A. (2001): On the discrete JLQ and JLQG problems. - Nonlin. Anal., Vol. 47, No. 1, pp. 423-434. Zbl1042.49537
- Dufour F. and Bertrand P. (1994): Stabilizing control law for hybrid models. - IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 2354-2357. Zbl0825.93698
- Dufor F. and Elliott R. (1998): Adaptive control for linear systems with markov perturbations. - IEEE Trans. Automat. Contr., Vol. 43, No. 3, pp. 351-372.
- Ghosh M.K. (1995): A note on an LQG regulator with Markovian switching and pathwise average cost. - IEEE Trans. Automat. Contr., Vol. 40, No. 2, pp. 1919-1921. Zbl0843.93090
- Ghaoui L. (1996): LMI optimization for nonstandard Riccati equations arising in stochastic control. - IEEE Trans. Automat. Contr., Vol. 41, No. 11, pp. 1666-1671. Zbl0863.93087
- Griffiths B.E. and Loparo K. (1985): Optimal control of jump-linear gaussian systems. - Int. J. Contr., Vol. 42, No. 4, pp. 791-819. Zbl0583.93070
- Ji Y. and Chizeck H.J. (1988): Controllability, observability and discrete-time markovian jump linear quadratic control. - Int. J. Contr., Vol. 48, No. 2, pp. 481-498. Zbl0669.93007
- Ji Y. and Chizeck H.J. (1989): Optimal quadratic control of jump linear systems with separately controlled transition probabilities. -Int. J. Contr., Vol. 49, No. 2, pp. 481-491. Zbl0677.93071
- Mariton M. (1987): Jump linear quadratic control with random state discontinuities. - Automatica, Vol. 23, No. 2, pp. 237-240. Zbl0628.93074
- Pan G. and Bar-Shalom Y. (1996): Stabilization of jump linear gaussian systems without mode observations. - Int. J. Contr., Vol. 64, No. 4, pp. 631-666. Zbl0857.93095
- Sworder D.D. (1969): Feedback control of a class of linear systems with jump parameters. - IEEE Trans. Automat. Contr., Vol. 14, No. 1, pp. 9-14.
- Sworder D.D. and Robinson V.G. (1973): Feedback regulators for jump parameter systems with state and control dependent transition rates. -IEEE Trans. Automat. Contr., Vol. 18, No. 4, pp. 355-359. Zbl0279.93059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.