Approximation of the Zakai equation in a nonlinear filtering problem with delay
Krystyna Twardowska; Tomasz Marnik; Monika Pasławska-Południak
International Journal of Applied Mathematics and Computer Science (2003)
- Volume: 13, Issue: 2, page 151-160
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topTwardowska, Krystyna, Marnik, Tomasz, and Pasławska-Południak, Monika. "Approximation of the Zakai equation in a nonlinear filtering problem with delay." International Journal of Applied Mathematics and Computer Science 13.2 (2003): 151-160. <http://eudml.org/doc/207630>.
@article{Twardowska2003,
abstract = {A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.},
author = {Twardowska, Krystyna, Marnik, Tomasz, Pasławska-Południak, Monika},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {stochastic differential equations with delay; Zakai's equation; nonlinear filtering; Galerkin technique},
language = {eng},
number = {2},
pages = {151-160},
title = {Approximation of the Zakai equation in a nonlinear filtering problem with delay},
url = {http://eudml.org/doc/207630},
volume = {13},
year = {2003},
}
TY - JOUR
AU - Twardowska, Krystyna
AU - Marnik, Tomasz
AU - Pasławska-Południak, Monika
TI - Approximation of the Zakai equation in a nonlinear filtering problem with delay
JO - International Journal of Applied Mathematics and Computer Science
PY - 2003
VL - 13
IS - 2
SP - 151
EP - 160
AB - A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.
LA - eng
KW - stochastic differential equations with delay; Zakai's equation; nonlinear filtering; Galerkin technique
UR - http://eudml.org/doc/207630
ER -
References
top- Ahmed N.V. and Radaideh S.M. (1997): A powerful numerical technique solving Zakai equation for nonlinear filtering. - Dynam.Contr., Vol. 7, No. 3, pp. 293-308. Zbl0880.93052
- Atar R., Viens F. and Zeituni O. (1999): Robustness of Zakai's equationvia Feynman-Kac representation, In: Stochastic Analysis, Control, Optimization and Applications (W.M. McEneaney, G.G. Yin and Q. Zhang, Eds.). - Boston: Birkhauser, pp. 339-352. Zbl0920.93038
- Benev V.E. (1981): Exact finite-dimensional filters for certain diffusions with nonlinear drift. - Stochastics, Vol. 5, No. 1-2, pp. 65-92.
- Bensoussan A., Głowinski R. and Rascanu A. (1990): Approximation of the Zakai equation by the splitting up method. - SIAM J. Contr.Optim., Vol. 28, No. 6, pp. 1420-1431. Zbl0726.60040
- Brzezniak Z. and Flandoli F. (1995): Almost sure approximation of Wong-Zakai type for stochastic partial differential equations.- Stoch. Proc. Appl., Vol. 55, No. 2, pp. 329-358. Zbl0842.60062
- Bucy R.S. (1965): Nonlinear filtering theory. - IEEE Trans. Automat. Contr., Vol. 10, No. 2, pp. 198-212.
- Chaleyat-Maurel A., Michel D. and Pardoux E. (1990): Un theorème d'unicite pour l'equation de Zakai. -Stoch. Rep., Vol. 29, No. 1, pp. 1-12. Zbl0696.60043
- Cohen de Lara M. (1998): Reduction of the Zakai equation by invariancegroup techniques. - Stoch. Proc. Appl., Vol. 73, No. 1, pp. 119-130. Zbl0933.93071
- Crisan D., Gaines J. and Lyons T. (1998): Convergence of a branchingparticle method to the solution of the Zakai equation. - SIAM J. Appl. Math., Vol. 58, No. 5, pp. 1568-1590. Zbl0915.93060
- Dawidowicz A.L. and Twardowska K. (1995): On the relation between the Stratonovich and Itô integrals with integrands of delayed argument. -Demonstr. Math., Vol. 28, No. 2, pp. 456-478. Zbl0838.60046
- Elliot R.J. and Gl owinski R. (1989): Approximations to solutions of the Zakai filtering equation. - Stoch. Anal. Appl., Vol. 7, No. 2, pp. 145-168.
- Elliot R.J. and Moore J. (1998): Zakai equations for Hilbert space valued processes. - Stoch. Anal. Appl., Vol. 16, No. 4, pp. 597-605. Zbl0910.60031
- Elsgolc L.E. (1964): Introduction to the Theory of Differential Equations with Delayed Argument. - Moscow: Nauka (in Russian).
- Florchinger P. and Le Gland F. (1991): Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. - Stoch. Stoch. Rep., Vol. 35, No. 4, pp. 233-256. Zbl0729.60036
- Gyongy I. (1989): The stability of stochastic partial differential equations and applications. Theorems on supports, In: Lecture Notes in Mathematics (G. Da Prato and L. Tubaro, Eds.).- Berlin: Springer, Vol. 1390, pp. 99-118. Zbl0683.93092
- Gyongy I. and Prohle T. (1990): On the approximation of stochastic partial differential equations and Stroock-Varadhan's support theorem. - Comput. Math. Appl., Vol. 19, No. 1, pp. 65-70. Zbl0711.60051
- Ikeda N. and Watanabe S. (1981): Stochastic Differential Equations and Diffusion Processes. - Amsterdam: North-Holland. Zbl0495.60005
- Itô K. (1996): Approximation of the Zakai equation for nonlinear filtering theory. - SIAM J. Contr. Optim., Vol. 34, No. 2, pp. 620-634. Zbl0847.93061
- Itô K. and Nisio M. (1964): On stationary solutions of a stochastic differential equations. - J. Math. Kyoto Univ., Vol. 4, No. 1, pp. 1-75. Zbl0131.16402
- Itô K. and Rozovskii B. (2000): Approximation of the Kushner equation. - SIAM J. Control Optim., v.38, No.3, pp.893-915. Zbl0952.93126
- Kallianpur G. (1980): Stochastic Filtering Theory. - Berlin: Springer. Zbl0458.60001
- Kallianpur G. (1996): Some recent developments in nonlinear filtering theory, In: Itô stochastic calculus and probability theory (N. Ikeda, Ed.). - Tokyo: Springer, pp. 157-170. Zbl0880.60042
- Kloeden P. and Platen E. (1992): Numerical Solutions of Stochastic Differential Equations. - Berlin: Springer. Zbl0925.65261
- Kolmanovsky V.B. (1974): On filtration of certain stochastic processes with after effects. - Avtomatika i Telemekhanika, Vol. 1, pp. 42-48.
- Kolmanovsky V., Matasov A. and Borne P. (2002): Mean-square filtering problem in hereditary systems with nonzero initial conditions.- IMA J. Math. Contr. Inform., Vol. 19, No. 1-2, pp. 25-48. Zbl1020.93022
- Kushner H.J. (1967): Nonlinear filtering: The exact dynamical equations satisfied by the conditional models. - IEEE Trans. Automat. Contr., Vol. 12, No. 3, pp. 262-267.
- Liptser R.S. and Shiryayev A.N. (1977): Studies of Random Processes Iand II. - Berlin: Springer. Zbl0364.60004
- Lototsky S., Mikulevičius R. and Rozovskii B. (1997): Nonlinear filtering revisited: A spectral approach. - SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 435-461. Zbl0873.60030
- Pardoux E. (1975): Equations aux derivees partielles stochastiques non lineaires monotones. Etude de solutions fortes de type Itô. - Ph. D. thesis, Sci. Math., Univ. Paris Sud.
- Pardoux E. (1989): Filtrage non lineaire et equations aux derivees partielles stochastiques associetes. - Preprint, Ecole d'Ete de Probabilites de Saint-Fleur, pp. 1-95.
- Pardoux E. (1979): Stochastic partial differential equations and filtering of diffusion processes. - Stochastics, Vol. 3, pp. 127-167. Zbl0424.60067
- Sobczyk K. (1991): Stochastic Differential Equations with Applicationsto Physics and Engineering. - Dordrecht: Kluwer. Zbl0762.60050
- Twardowska K. (1993): Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions. -Dissertationes Math., Vol. 325, pp. 1-54. Zbl0777.60051
- Twardowska K. (1995): An approximation theorem of Wong-Zakaitype for nonlinear stochastic partial differential equations. -Stoch. Anal. Appl., v.13, No.5, pp.601-626. Zbl0839.60059
- Twardowska K. and Pasławska-Południak M. (2003): Approximation theorems of Wong-Zakai type for stochastic partial differential equations with delay arising in filtering problems. - to appear. Zbl1052.93058
- Twardowska K. (1991): On the approximation theorem of Wong-Zakai type for the functional stochastic differential equations. -Probab. Math. Statist., Vol. 12, No. 2, pp. 319-334. Zbl0774.60056
- Wong E. and Zakai M. (1965): On the convergence of ordinary integralsto stochastic integrals. - Ann. Math. Statist., Vol. 36, pp. 1560-1564. Zbl0138.11201
- Zakai M. (1969): On the optimal filtering of diffusion processes. - Z. Wahrsch. Verw. Geb., Vol. 11, pp. 230-243. Zbl0164.19201
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.