Approximation of the Zakai equation in a nonlinear filtering problem with delay

Krystyna Twardowska; Tomasz Marnik; Monika Pasławska-Południak

International Journal of Applied Mathematics and Computer Science (2003)

  • Volume: 13, Issue: 2, page 151-160
  • ISSN: 1641-876X

Abstract

top
A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.

How to cite

top

Twardowska, Krystyna, Marnik, Tomasz, and Pasławska-Południak, Monika. "Approximation of the Zakai equation in a nonlinear filtering problem with delay." International Journal of Applied Mathematics and Computer Science 13.2 (2003): 151-160. <http://eudml.org/doc/207630>.

@article{Twardowska2003,
abstract = {A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.},
author = {Twardowska, Krystyna, Marnik, Tomasz, Pasławska-Południak, Monika},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {stochastic differential equations with delay; Zakai's equation; nonlinear filtering; Galerkin technique},
language = {eng},
number = {2},
pages = {151-160},
title = {Approximation of the Zakai equation in a nonlinear filtering problem with delay},
url = {http://eudml.org/doc/207630},
volume = {13},
year = {2003},
}

TY - JOUR
AU - Twardowska, Krystyna
AU - Marnik, Tomasz
AU - Pasławska-Południak, Monika
TI - Approximation of the Zakai equation in a nonlinear filtering problem with delay
JO - International Journal of Applied Mathematics and Computer Science
PY - 2003
VL - 13
IS - 2
SP - 151
EP - 160
AB - A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.
LA - eng
KW - stochastic differential equations with delay; Zakai's equation; nonlinear filtering; Galerkin technique
UR - http://eudml.org/doc/207630
ER -

References

top
  1. Ahmed N.V. and Radaideh S.M. (1997): A powerful numerical technique solving Zakai equation for nonlinear filtering. - Dynam.Contr., Vol. 7, No. 3, pp. 293-308. Zbl0880.93052
  2. Atar R., Viens F. and Zeituni O. (1999): Robustness of Zakai's equationvia Feynman-Kac representation, In: Stochastic Analysis, Control, Optimization and Applications (W.M. McEneaney, G.G. Yin and Q. Zhang, Eds.). - Boston: Birkhauser, pp. 339-352. Zbl0920.93038
  3. Benev V.E. (1981): Exact finite-dimensional filters for certain diffusions with nonlinear drift. - Stochastics, Vol. 5, No. 1-2, pp. 65-92. 
  4. Bensoussan A., Głowinski R. and Rascanu A. (1990): Approximation of the Zakai equation by the splitting up method. - SIAM J. Contr.Optim., Vol. 28, No. 6, pp. 1420-1431. Zbl0726.60040
  5. Brzezniak Z. and Flandoli F. (1995): Almost sure approximation of Wong-Zakai type for stochastic partial differential equations.- Stoch. Proc. Appl., Vol. 55, No. 2, pp. 329-358. Zbl0842.60062
  6. Bucy R.S. (1965): Nonlinear filtering theory. - IEEE Trans. Automat. Contr., Vol. 10, No. 2, pp. 198-212. 
  7. Chaleyat-Maurel A., Michel D. and Pardoux E. (1990): Un theorème d'unicite pour l'equation de Zakai. -Stoch. Rep., Vol. 29, No. 1, pp. 1-12. Zbl0696.60043
  8. Cohen de Lara M. (1998): Reduction of the Zakai equation by invariancegroup techniques. - Stoch. Proc. Appl., Vol. 73, No. 1, pp. 119-130. Zbl0933.93071
  9. Crisan D., Gaines J. and Lyons T. (1998): Convergence of a branchingparticle method to the solution of the Zakai equation. - SIAM J. Appl. Math., Vol. 58, No. 5, pp. 1568-1590. Zbl0915.93060
  10. Dawidowicz A.L. and Twardowska K. (1995): On the relation between the Stratonovich and Itô integrals with integrands of delayed argument. -Demonstr. Math., Vol. 28, No. 2, pp. 456-478. Zbl0838.60046
  11. Elliot R.J. and Gl owinski R. (1989): Approximations to solutions of the Zakai filtering equation. - Stoch. Anal. Appl., Vol. 7, No. 2, pp. 145-168. 
  12. Elliot R.J. and Moore J. (1998): Zakai equations for Hilbert space valued processes. - Stoch. Anal. Appl., Vol. 16, No. 4, pp. 597-605. Zbl0910.60031
  13. Elsgolc L.E. (1964): Introduction to the Theory of Differential Equations with Delayed Argument. - Moscow: Nauka (in Russian). 
  14. Florchinger P. and Le Gland F. (1991): Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. - Stoch. Stoch. Rep., Vol. 35, No. 4, pp. 233-256. Zbl0729.60036
  15. Gyongy I. (1989): The stability of stochastic partial differential equations and applications. Theorems on supports, In: Lecture Notes in Mathematics (G. Da Prato and L. Tubaro, Eds.).- Berlin: Springer, Vol. 1390, pp. 99-118. Zbl0683.93092
  16. Gyongy I. and Prohle T. (1990): On the approximation of stochastic partial differential equations and Stroock-Varadhan's support theorem. - Comput. Math. Appl., Vol. 19, No. 1, pp. 65-70. Zbl0711.60051
  17. Ikeda N. and Watanabe S. (1981): Stochastic Differential Equations and Diffusion Processes. - Amsterdam: North-Holland. Zbl0495.60005
  18. Itô K. (1996): Approximation of the Zakai equation for nonlinear filtering theory. - SIAM J. Contr. Optim., Vol. 34, No. 2, pp. 620-634. Zbl0847.93061
  19. Itô K. and Nisio M. (1964): On stationary solutions of a stochastic differential equations. - J. Math. Kyoto Univ., Vol. 4, No. 1, pp. 1-75. Zbl0131.16402
  20. Itô K. and Rozovskii B. (2000): Approximation of the Kushner equation. - SIAM J. Control Optim., v.38, No.3, pp.893-915. Zbl0952.93126
  21. Kallianpur G. (1980): Stochastic Filtering Theory. - Berlin: Springer. Zbl0458.60001
  22. Kallianpur G. (1996): Some recent developments in nonlinear filtering theory, In: Itô stochastic calculus and probability theory (N. Ikeda, Ed.). - Tokyo: Springer, pp. 157-170. Zbl0880.60042
  23. Kloeden P. and Platen E. (1992): Numerical Solutions of Stochastic Differential Equations. - Berlin: Springer. Zbl0925.65261
  24. Kolmanovsky V.B. (1974): On filtration of certain stochastic processes with after effects. - Avtomatika i Telemekhanika, Vol. 1, pp. 42-48. 
  25. Kolmanovsky V., Matasov A. and Borne P. (2002): Mean-square filtering problem in hereditary systems with nonzero initial conditions.- IMA J. Math. Contr. Inform., Vol. 19, No. 1-2, pp. 25-48. Zbl1020.93022
  26. Kushner H.J. (1967): Nonlinear filtering: The exact dynamical equations satisfied by the conditional models. - IEEE Trans. Automat. Contr., Vol. 12, No. 3, pp. 262-267. 
  27. Liptser R.S. and Shiryayev A.N. (1977): Studies of Random Processes Iand II. - Berlin: Springer. Zbl0364.60004
  28. Lototsky S., Mikulevičius R. and Rozovskii B. (1997): Nonlinear filtering revisited: A spectral approach. - SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 435-461. Zbl0873.60030
  29. Pardoux E. (1975): Equations aux derivees partielles stochastiques non lineaires monotones. Etude de solutions fortes de type Itô. - Ph. D. thesis, Sci. Math., Univ. Paris Sud. 
  30. Pardoux E. (1989): Filtrage non lineaire et equations aux derivees partielles stochastiques associetes. - Preprint, Ecole d'Ete de Probabilites de Saint-Fleur, pp. 1-95. 
  31. Pardoux E. (1979): Stochastic partial differential equations and filtering of diffusion processes. - Stochastics, Vol. 3, pp. 127-167. Zbl0424.60067
  32. Sobczyk K. (1991): Stochastic Differential Equations with Applicationsto Physics and Engineering. - Dordrecht: Kluwer. Zbl0762.60050
  33. Twardowska K. (1993): Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions. -Dissertationes Math., Vol. 325, pp. 1-54. Zbl0777.60051
  34. Twardowska K. (1995): An approximation theorem of Wong-Zakaitype for nonlinear stochastic partial differential equations. -Stoch. Anal. Appl., v.13, No.5, pp.601-626. Zbl0839.60059
  35. Twardowska K. and Pasławska-Południak M. (2003): Approximation theorems of Wong-Zakai type for stochastic partial differential equations with delay arising in filtering problems. - to appear. Zbl1052.93058
  36. Twardowska K. (1991): On the approximation theorem of Wong-Zakai type for the functional stochastic differential equations. -Probab. Math. Statist., Vol. 12, No. 2, pp. 319-334. Zbl0774.60056
  37. Wong E. and Zakai M. (1965): On the convergence of ordinary integralsto stochastic integrals. - Ann. Math. Statist., Vol. 36, pp. 1560-1564. Zbl0138.11201
  38. Zakai M. (1969): On the optimal filtering of diffusion processes. - Z. Wahrsch. Verw. Geb., Vol. 11, pp. 230-243. Zbl0164.19201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.