# Control structure in optimization problems of bar systems

International Journal of Applied Mathematics and Computer Science (2004)

- Volume: 14, Issue: 4, page 515-529
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topMikulski, Leszek. "Control structure in optimization problems of bar systems." International Journal of Applied Mathematics and Computer Science 14.4 (2004): 515-529. <http://eudml.org/doc/207716>.

@article{Mikulski2004,

abstract = {Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides of state equations appearing successively in time. The correctness of the assumed control structure can be checked after obtaining the solution of the boundary problem. For the numerical solution, we use hybrid procedures which are a connection of the multiple shooting method with that of collocation.},

author = {Mikulski, Leszek},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {optimization; elastic structures; minimum principle},

language = {eng},

number = {4},

pages = {515-529},

title = {Control structure in optimization problems of bar systems},

url = {http://eudml.org/doc/207716},

volume = {14},

year = {2004},

}

TY - JOUR

AU - Mikulski, Leszek

TI - Control structure in optimization problems of bar systems

JO - International Journal of Applied Mathematics and Computer Science

PY - 2004

VL - 14

IS - 4

SP - 515

EP - 529

AB - Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides of state equations appearing successively in time. The correctness of the assumed control structure can be checked after obtaining the solution of the boundary problem. For the numerical solution, we use hybrid procedures which are a connection of the multiple shooting method with that of collocation.

LA - eng

KW - optimization; elastic structures; minimum principle

UR - http://eudml.org/doc/207716

ER -

## References

top- Bulirsch R. and Montrone F. and Pesch H.J. (1991): Abort landing in the presence of a wind shearas a minimax optimal control problem. Part 1: Necessary conditions. -Optim. Theory Applic., Vol. 70, No. 1, pp. 1-23. Zbl0726.49014
- Buss M., Glocker M., Hardt M., Von Stryk O., Bulirsch R., Schmidt G. (2002): Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications, In: Modelling, Analysis and Design of Hybrid Systems: (S. Engell, G. Frehse, E. Schnieder, Eds.). - Berlin: Springer, pp. 311-335.
- Hiltman P., Chudej K., Breitner M. (1993): Eine modifizierte Mehrzielmethode zur Losung von Mehrpunkt - Randwertproblemen - Benuzeranleitung. - Sonderforschungsbereich 255 DFG, TU Munchen, Report 14.
- Hinsberger H. (1996): Ein direktes Mehrschiessverfahren zur Losung von Optimalsteuerungsproblemen - DIRMUS - Benutzeranleitung. - TU Clausthal.
- Malanowski K., Maurer, H. (1998): Sensitivity analysis for optimal control problems subject to higher order state constraints.- Echtzeit-Optimierung grosser Systeme, DFG, Preprint 98-5, 1-32, available at: http://www.zib.de/dfg-echtzeit
- Mikulski L. (1999): Optimal design of elastic continuous structures.- TU Cracow, Series Civil Engineering, Monograph 259.
- Oberle H.J., Grimm, W. (1989): BNDSCO - A program for the numerical solution of optimal control problems. - Deutsche Forschungsanstalt fur Luft und Raumfahrt, DLR IB 515-8922, Oberpfaffenhofen.
- Pesch H.J. (1994): A practical guide to the solution of real-life optimal control problems. - Contr. Cybern., Vol. 23, Nos. 1-2, pp. 7-60. Zbl0811.49029
- Pesch H.J. (2002): Schlussel Technologie Mathematik. -Stuttgart-Leipzig-Wiesbaden: Teubner Verlag.
- Von Stryk O. (2002): User's guide DIRCOL - A direct collocation method for the numerical solution of optimal control problems. - Technische Universitat Darmstadt, Fachgebiet Simulation und System-optimierung (SIM), Ver. 2.1.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.