# Nonlinear diagnostic filter design: algebraic and geometric points of view

Alexey Shumsky; Alexey Zhirabok

International Journal of Applied Mathematics and Computer Science (2006)

- Volume: 16, Issue: 1, page 115-127
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topShumsky, Alexey, and Zhirabok, Alexey. "Nonlinear diagnostic filter design: algebraic and geometric points of view." International Journal of Applied Mathematics and Computer Science 16.1 (2006): 115-127. <http://eudml.org/doc/207769>.

@article{Shumsky2006,

abstract = {The problem of diagnostic filter design is studied. Algebraic and geometric approaches to solving this problem are investigated. Some relations between these approaches are established. New definitions of fault detectability and isolability are formulated. On the basis of these definitions, a procedure for diagnostic filter design is given in both algebraic and geometric terms.},

author = {Shumsky, Alexey, Zhirabok, Alexey},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {algebraic approach; observers; diagnostic filter; fault detection and isolation; nonlinear systems; geometric approach},

language = {eng},

number = {1},

pages = {115-127},

title = {Nonlinear diagnostic filter design: algebraic and geometric points of view},

url = {http://eudml.org/doc/207769},

volume = {16},

year = {2006},

}

TY - JOUR

AU - Shumsky, Alexey

AU - Zhirabok, Alexey

TI - Nonlinear diagnostic filter design: algebraic and geometric points of view

JO - International Journal of Applied Mathematics and Computer Science

PY - 2006

VL - 16

IS - 1

SP - 115

EP - 127

AB - The problem of diagnostic filter design is studied. Algebraic and geometric approaches to solving this problem are investigated. Some relations between these approaches are established. New definitions of fault detectability and isolability are formulated. On the basis of these definitions, a procedure for diagnostic filter design is given in both algebraic and geometric terms.

LA - eng

KW - algebraic approach; observers; diagnostic filter; fault detection and isolation; nonlinear systems; geometric approach

UR - http://eudml.org/doc/207769

ER -

## References

top- Alcorta-Garcia E. and Frank P.M. (1997): Deterministic nonlinear observer-based approach to fault diagnosis: A survey. - Contr. Eng. Pract., Vol. 5, No. 5, pp. 663-670.
- Birk J. and Zeitz M. (1988): Extended Luenberger observer for nonlinear multivariable systems. - Int. J. Contr., Vol. 47, No. 6, pp. 1823-1836. Zbl0648.93022
- Chen J. and Patton R.J. (1994): A reexamination of fault detectability and isolability in linear dynamic systems. - Proc. Int. Symp. Safeprocess'94, Espoo, Finland, pp. 590-596.
- Chow E.Y. and Willsky A.S. (1984): Analytical redundancy and the design of robust failure detection systems. - IEEE Trans. Automat. Contr., Vol. AC-29, No. 7, pp. 603-614. Zbl0542.90040
- De Persis C. and Isidori A. (2001): A geometric approach to nonlinear fault detection and isolation. - IEEE Trans. Automat. Contr., Vol. AC-46, No. 6, pp. 853-865. Zbl1009.93003
- Ding X. and Frank P.M. (1990): Nonlinear observer design via an extended canonical form. - Syst. Contr. Lett., Vol. 15, pp. 313-322. Zbl0724.93009
- Edelmayer A., Bokor J., Szabo Z. and Szigeti F. (2004): Fault reconstruction by means of system inversion: a geometric approach to fault detection and isolation in nonlinear systems. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, pp. 189-199. Zbl1083.93008
- Frank P.M. (1990): Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results. - Automatica, Vol. 26, No. 3, pp. 459-474. Zbl0713.93052
- Frank P.M. (1996): Analytical and qualitative model-based fault diagnosis - A survey and some new results. - Europ. J. Contr., Vol. 2, No. 1, pp. 6-28. Zbl0857.93015
- Frank P.M. and Ding X. (1997): Survey of robust residual generation and evaluation methods in observer-based fault detection systems. - J. Process Contr., Vol. 7, No. 3, pp. 403-424.
- Gauthier J. and Kupca I. (2000): Deterministic Observation Theory and Application. - Cambridge: Cambridge Univ. Press.
- Gertler J. and Kunwer M.M. (1993): Optimal residual decoupling for robust fault diagnosis. - Proc. Int. Conf. Tooldiag'93, Toulouse, France, pp. 436-452. Zbl0817.93039
- Isidori A. (1989): Nonlinear Control Systems. - London: Springer. Zbl0693.93046
- Hartmanis J. and Stearns R. (1966): Algebraic Structure Theory of Sequential Machines. - New York: Prentice Hall. Zbl0154.41701
- Join C., Ponsart J-C. and Sauter D. (2002a): Fault detection and isolation via nonlinear filters. - Proc. 15-th IFAC World Congress,Barcelona, Spain, (on CD ROM).
- Join C., Ponsart J-C. and Sauter D. (2002b): Sufficient conditions to fault isolation in nonlinear systems: a geometric approach. - Proc. 15-th IFACs World Congress, Barcelona, Spain, (on CD ROM).
- Korn G.A. and Korn T.M. (1961): Mathematical Handbook. - New York: McGraw-Hill.
- Massoumnia M.A. (1986): A geometric approach to the synthesis of failure detection filters. - IEEE Trans. Automat. Contr., Vol. AC-31, No. 9, pp. 839-846. Zbl0599.93017
- Massoumnia M.A., Verghese G.C. and Willsky A.S. (1989): Failure detection and identification. - IEEE Trans. Automat. Contr., Vol. AC-34, No. 3, pp. 316-323. Zbl0682.93061
- Mironovskii L.A. (1980): Functional diagnosis of dynamic systems. - Automat. Remote Contr., Vol. 41, No. 8, pp. 120-128.
- Misawa E.A. and Hedrick J.K. (1989): Nonlinear observers - A state-of-the-art survey. - J. Dynam. Syst. Meas. Contr., Vol. 111, No. 9, pp. 344-352. Zbl0695.93106
- Park J., Rizzoni G. and Ribbens W.B. (1994): On the representation of sensor faults in fault detection filters. - Automatica, Vol. 30, No. 11, pp. 1793-1795. Zbl0925.93875
- Shumsky A.Ye. (1988): Model of the faults for discrete systems and its application to the problem of fault diagnosis. - Electronnoye Modelirovanie, Vol. 10, No. 4, pp. 56-61, (in Russian).
- Shumsky A.Ye. (1991): Fault isolation in nonlinear systems via functional diagnosis. - Automat. Remote Contr., Vol. 52, No. 12, pp. 148-155.
- Shumsky A.Ye. and Zhirabok A.N. (2005): Nonlinear diagnostic filter design: algebraic and geometric points of view. - Proc. 16-th IFAC WorldCongress, Prague, Czech Republic, (on CD ROM). Zbl1334.93081
- Zhirabok A.N. and Shumsky A.Ye. (1987): Functional diagnosis of continuous dynamic systems described by equations whose right-hand side is polynomial. - Automat. Remote Contr., Vol. 48, No. 8, pp. 154-164, (in Russian issue).
- Zhirabok A.N. and Shumsky A.Ye. (1993a): Controllability, Observability, Decomposition of Nonlinear Dynamic Systems. - Vladivostok: Far State Technical University Press, (in Russian).
- Zhirabok A.N. and Shumsky A.Ye. (1993b): A new mathematical techniques for nonlinear systems research. - Proc. 12-th IFAC World Congress, Sydney, Australia, Vol. 3, pp. 485-488.
- Zhirabok A.N. (1997): Fault detection and isolation: Linear and nonlinear systems. - Prep. Int. Symp. Safeprocess'97, Hull, UK, pp. 903-908.

## Citations in EuDML Documents

top- Alexey Shumsky, Redundancy relations for fault diagnosis in nonlinear uncertain systems
- Denis Berdjag, Vincent Cocquempot, Cyrille Christophe, Alexey Shumsky, Alexey Zhirabok, Algebraic approach for model decomposition: Application to fault detection and isolation in discrete-event systems
- Péter Gáspár, Zoltán Szabó, József Bokor, LPV design of fault-tolerant control for road vehicles

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.