# Node assignment problem in Bayesian networks

Joanna Polanska; Damian Borys; Andrzej Polanski

International Journal of Applied Mathematics and Computer Science (2006)

- Volume: 16, Issue: 2, page 233-240
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topPolanska, Joanna, Borys, Damian, and Polanski, Andrzej. "Node assignment problem in Bayesian networks." International Journal of Applied Mathematics and Computer Science 16.2 (2006): 233-240. <http://eudml.org/doc/207788>.

@article{Polanska2006,

abstract = {This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.},

author = {Polanska, Joanna, Borys, Damian, Polanski, Andrzej},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {confidence intervals; biostatistics; maximum likelihood; Bayesian networks},

language = {eng},

number = {2},

pages = {233-240},

title = {Node assignment problem in Bayesian networks},

url = {http://eudml.org/doc/207788},

volume = {16},

year = {2006},

}

TY - JOUR

AU - Polanska, Joanna

AU - Borys, Damian

AU - Polanski, Andrzej

TI - Node assignment problem in Bayesian networks

JO - International Journal of Applied Mathematics and Computer Science

PY - 2006

VL - 16

IS - 2

SP - 233

EP - 240

AB - This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.

LA - eng

KW - confidence intervals; biostatistics; maximum likelihood; Bayesian networks

UR - http://eudml.org/doc/207788

ER -

## References

top- Charniak E. (1991): Bayesian networks without tears. -AI Magazine, Vol. 12, No. 4, pp. 50-63.
- Chickering D.M. (2002): Learning equivalence classes of Bayesian-network structures. - J. Mach. Learn. Res., Vol. 2, No. 3, pp. 445-498. Zbl1007.68179
- David H.A. and Nagaraja H.N. (2003): Order Statistics. -Hoboken, New Jersey: Wiley. Zbl1053.62060
- Friedman N. (1998): The Bayesian structural EM algorithm. - Proc. 14-th Conf. Uncertainty in Artificial Intelligence, Madisin, Wisconsin, USA, pp. 129-138.
- Friedman N. (2004): Inferring cellular networks using probabilistic graphical models. - Science, Vol. 303, No. 5659, pp. 799-805.
- Friedman N., Linitial M., Nachman I. and Peér D. (2000): Using Bayesian networks to analyze expression data. - J. Comput. Biol., Vol. 7, Nos. 3-4, pp. 601-620.
- Gadbury G.L. and Schreuder H.T. (2003): Cause-effect relationships in analytical surveys: An illustration of statistical issues. - Env.Monit. Assess., Vol. 83, No. 3, pp. 205-227.
- Gilks W.R., Richardson S. and Spiegelhalter D.J. (1996): Markov Chain Monte Carlo in Practice. - London: Chapman and Hall. Zbl0832.00018
- Heckerman D. (1995): A tutorial on learning with Bayesian networks. - Tech.Rep., MSR-TR-95-06, available at:ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf
- Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R., Goodlett D.R., Aebersold D.R. and Hood L.(2001): Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. - Science, Vol. 292, No. 5518, pp. 929-934.
- Ideker T., Ozier O., Schwikowski B. and Siegel A.F. (2002): Discovering regulatory and signaling circuits in molecular interaction networks. - Bioinf. Vol. 18, Suppl. 1, No. 90001, pp. S233-S240.
- Jansen R., Yu H., Greenbaum H., Kluger Y., Krogan N.J., Chung S., Emili S.,Snyder M., Greenblatt J.F. and Gerstein M.(2003): A Bayesian networks approach for predicting protein - Protein interactions from genomic data. - Science, Vol. 302, No. 5644, pp. 449-453.
- Jensen F.V. (2001): Bayesian Networks and Decision Graphs. -New York: Springer. Zbl0973.62005
- Murphy K. (2005): Bayes net toolbox for matlab. - Available at: http://bnt.sourceforge.net/
- Liu J. and Desmarais M.C. (1997): A method of learning implication networks from empirical data: Algorithm and Monte-Carlo simulation-based validation. - IEEE Trans. Knowl. Data Eng., Vol. 9, No. 6, pp. 990-1004.
- Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E.(1953): Equations of state calculations by fast computing machines. - J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092.
- Neapolitan R.E. (2003): Learning Bayesian Networks. -Upper Saddle River, NJ: Prentice Hall.
- Pearl J. (2000): Causality: Models, Reasoning, and Inference. -Cambridge, MA: Cambridge University Press. Zbl0959.68116
- Pearl J. and Verma T.S. (1991): A theory of inferred causation, In: Principles of Knowledge Representation and Reasoning, (J.A. Allen, R. Fikes and E. Sandewall, Eds.). - San Mateo: Morgan Kaufmann.
- Peér D., Regev A., Elidan G. and Friedman N. (2001): Inferring subnetworks from perturbed expression profiles. - Bioinf., Vol. 17, Suppl. 1, No. 90001, pp. S215-S224.
- Polanski A., Polanska J., Jarzab M., Wiench M. and Jarzab B.,(2005): Inferring cause - effect relations from gene expression profiles of cancer versus normal cells. - Tech. Rep., available at: http://web.zis.ia.polsl.gliwice.pl/publikacje/projekty/technical_report.pdf Zbl1126.92027
- Rhodes D.R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh R., Barrette T., Pandey A. and Chinnaiyan A.M. (2004): ONCOMINE, A cancer microarray database and integrated data mining platform. - Neoplasia, Vol. 6, No. 1, pp. 1-6.
- Segal E., Taskar B., Gasch A., Friedman N. and Koller D. (2001): Rich probabilistic models for gene expression. - Bioinf., Vol. 1, No. 1, pp. 1-10.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.