Node assignment problem in Bayesian networks
Joanna Polanska; Damian Borys; Andrzej Polanski
International Journal of Applied Mathematics and Computer Science (2006)
- Volume: 16, Issue: 2, page 233-240
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topPolanska, Joanna, Borys, Damian, and Polanski, Andrzej. "Node assignment problem in Bayesian networks." International Journal of Applied Mathematics and Computer Science 16.2 (2006): 233-240. <http://eudml.org/doc/207788>.
@article{Polanska2006,
abstract = {This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.},
author = {Polanska, Joanna, Borys, Damian, Polanski, Andrzej},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {confidence intervals; biostatistics; maximum likelihood; Bayesian networks},
language = {eng},
number = {2},
pages = {233-240},
title = {Node assignment problem in Bayesian networks},
url = {http://eudml.org/doc/207788},
volume = {16},
year = {2006},
}
TY - JOUR
AU - Polanska, Joanna
AU - Borys, Damian
AU - Polanski, Andrzej
TI - Node assignment problem in Bayesian networks
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 2
SP - 233
EP - 240
AB - This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.
LA - eng
KW - confidence intervals; biostatistics; maximum likelihood; Bayesian networks
UR - http://eudml.org/doc/207788
ER -
References
top- Charniak E. (1991): Bayesian networks without tears. -AI Magazine, Vol. 12, No. 4, pp. 50-63.
- Chickering D.M. (2002): Learning equivalence classes of Bayesian-network structures. - J. Mach. Learn. Res., Vol. 2, No. 3, pp. 445-498. Zbl1007.68179
- David H.A. and Nagaraja H.N. (2003): Order Statistics. -Hoboken, New Jersey: Wiley. Zbl1053.62060
- Friedman N. (1998): The Bayesian structural EM algorithm. - Proc. 14-th Conf. Uncertainty in Artificial Intelligence, Madisin, Wisconsin, USA, pp. 129-138.
- Friedman N. (2004): Inferring cellular networks using probabilistic graphical models. - Science, Vol. 303, No. 5659, pp. 799-805.
- Friedman N., Linitial M., Nachman I. and Peér D. (2000): Using Bayesian networks to analyze expression data. - J. Comput. Biol., Vol. 7, Nos. 3-4, pp. 601-620.
- Gadbury G.L. and Schreuder H.T. (2003): Cause-effect relationships in analytical surveys: An illustration of statistical issues. - Env.Monit. Assess., Vol. 83, No. 3, pp. 205-227.
- Gilks W.R., Richardson S. and Spiegelhalter D.J. (1996): Markov Chain Monte Carlo in Practice. - London: Chapman and Hall. Zbl0832.00018
- Heckerman D. (1995): A tutorial on learning with Bayesian networks. - Tech.Rep., MSR-TR-95-06, available at:ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf
- Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R., Goodlett D.R., Aebersold D.R. and Hood L.(2001): Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. - Science, Vol. 292, No. 5518, pp. 929-934.
- Ideker T., Ozier O., Schwikowski B. and Siegel A.F. (2002): Discovering regulatory and signaling circuits in molecular interaction networks. - Bioinf. Vol. 18, Suppl. 1, No. 90001, pp. S233-S240.
- Jansen R., Yu H., Greenbaum H., Kluger Y., Krogan N.J., Chung S., Emili S.,Snyder M., Greenblatt J.F. and Gerstein M.(2003): A Bayesian networks approach for predicting protein - Protein interactions from genomic data. - Science, Vol. 302, No. 5644, pp. 449-453.
- Jensen F.V. (2001): Bayesian Networks and Decision Graphs. -New York: Springer. Zbl0973.62005
- Murphy K. (2005): Bayes net toolbox for matlab. - Available at: http://bnt.sourceforge.net/
- Liu J. and Desmarais M.C. (1997): A method of learning implication networks from empirical data: Algorithm and Monte-Carlo simulation-based validation. - IEEE Trans. Knowl. Data Eng., Vol. 9, No. 6, pp. 990-1004.
- Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E.(1953): Equations of state calculations by fast computing machines. - J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092.
- Neapolitan R.E. (2003): Learning Bayesian Networks. -Upper Saddle River, NJ: Prentice Hall.
- Pearl J. (2000): Causality: Models, Reasoning, and Inference. -Cambridge, MA: Cambridge University Press. Zbl0959.68116
- Pearl J. and Verma T.S. (1991): A theory of inferred causation, In: Principles of Knowledge Representation and Reasoning, (J.A. Allen, R. Fikes and E. Sandewall, Eds.). - San Mateo: Morgan Kaufmann.
- Peér D., Regev A., Elidan G. and Friedman N. (2001): Inferring subnetworks from perturbed expression profiles. - Bioinf., Vol. 17, Suppl. 1, No. 90001, pp. S215-S224.
- Polanski A., Polanska J., Jarzab M., Wiench M. and Jarzab B.,(2005): Inferring cause - effect relations from gene expression profiles of cancer versus normal cells. - Tech. Rep., available at: http://web.zis.ia.polsl.gliwice.pl/publikacje/projekty/technical_report.pdf Zbl1126.92027
- Rhodes D.R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh R., Barrette T., Pandey A. and Chinnaiyan A.M. (2004): ONCOMINE, A cancer microarray database and integrated data mining platform. - Neoplasia, Vol. 6, No. 1, pp. 1-6.
- Segal E., Taskar B., Gasch A., Friedman N. and Koller D. (2001): Rich probabilistic models for gene expression. - Bioinf., Vol. 1, No. 1, pp. 1-10.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.