Fault Tolerant Control design for polytopic LPV systems

Mickael Rodrigues; Didier Theilliol; Samir Aberkane; Dominique Sauter

International Journal of Applied Mathematics and Computer Science (2007)

  • Volume: 17, Issue: 1, page 27-37
  • ISSN: 1641-876X

Abstract

top
This paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.

How to cite

top

Rodrigues, Mickael, et al. "Fault Tolerant Control design for polytopic LPV systems." International Journal of Applied Mathematics and Computer Science 17.1 (2007): 27-37. <http://eudml.org/doc/207819>.

@article{Rodrigues2007,
abstract = {This paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.},
author = {Rodrigues, Mickael, Theilliol, Didier, Aberkane, Samir, Sauter, Dominique},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {LMI; fault tolerant control; static output feedback; stability; multiple actuator failures; polytopic LPV systems},
language = {eng},
number = {1},
pages = {27-37},
title = {Fault Tolerant Control design for polytopic LPV systems},
url = {http://eudml.org/doc/207819},
volume = {17},
year = {2007},
}

TY - JOUR
AU - Rodrigues, Mickael
AU - Theilliol, Didier
AU - Aberkane, Samir
AU - Sauter, Dominique
TI - Fault Tolerant Control design for polytopic LPV systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2007
VL - 17
IS - 1
SP - 27
EP - 37
AB - This paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.
LA - eng
KW - LMI; fault tolerant control; static output feedback; stability; multiple actuator failures; polytopic LPV systems
UR - http://eudml.org/doc/207819
ER -

References

top
  1. Angelis G.Z. (2001): System Analysis, Modelling and Control with Polytopic Linear Models. - Ph.D. thesis, University of Eindhoven, the Netherlands. 
  2. Blanke M., Kinnaert M., Lunze J. and Staroswiecki M. (2003): Diagnosis and Fault-Tolerant Control.- Berlin: Springer. Zbl1023.93001
  3. Bouazizi M.H., Kochbati A. and Ksouri M. (2001): H_∞ control of LPV systems with dynamic output feedback.- Proc. 9th Mederranean Conf. Control and Automation (MED'01), Dubrovnik, Croatia, (CD-ROOM). 
  4. Casavola A., Famularo D. and Franzc G. (2003): Predictive control of constrained nonlinear systems via LPV linear embeddings. - Int. J. Robust Nonlin. Contr., Vol.13, Nos.3-4, pp.281-294. 
  5. Chadli M., Maquin D., and Ragot J. (2002): An LMI formulation for output feedback stabilization in multiple model approach. - Proc. 41-st IEEE Conf. Decision and Control, Las Vegas, USA, pp.311-316. 
  6. Chilali M. and Gahinet P. (1996): H_∞ design with pole placement constraints: An LMI approach. - IEEE Trans. Automat. Contr., Vol.41, No.3, pp.358-367. Zbl0857.93048
  7. Eterno J.S., Looze D.P., Weiss J.L. and Willsky A.S. (1985): Design issues for fault-tolerant restructurable aircraft control. - Proc. 24th IEEE Conf. Decision and Control, Fort Lauderdale,USA, pp.900-905. 
  8. Geromel J.C., DeSouza C.C. and Skelton R.E. (1998): Static output feedback controllers: Stability and convexy. - IEEE Trans. Automat. Contr., Vol. 43, No.1, pp.120-125. Zbl0952.93106
  9. Glover S.F. (2003): Modeling and Stability Analysis of Power Electronics Based Systems. - Ph.D. thesis, Purdue University, USA. 
  10. Jabbari F. (1997): Output feedback controllers for systems with structured uncertainty. - IEEE Trans. Automat. Contr., Vol.42, No.5, pp. 715-719. Zbl0886.93023
  11. Kanev S. (2004): Robust Fault-Tolerant Control. - Ph.D. thesis, University of Twente, the Netherlands. 
  12. Maki M., Jiang J. and Hagino K. (2001): A stability guaranteed active fault-tolerant control system against actuator failures. - Proc. 40th IEEE Conf. Decision and Control, Orlando, FL, Vol.2, pp.1893-1898. Zbl1057.93018
  13. Noura H., Sauter D., Hamelin F. and Theilliol D. (2000): Fault-tolerant control in dynamic systems: Application to a winding machine. - IEEE Contr. Syst. Mag., Vol.20, No.1, pp.33-49. 
  14. Patton R.J. (1997): Fault-tolerant control: The 1997 situation.- Proc. IFAC Symp. Safeprocess, Kingston Upon Hull, U.K, Vol.2, pp.1033-1055. 
  15. Reberga L., Henrion D., Bernussou J. and Vary F. (2005): LPV modeling of a turbofan engine. - Proc. 16th IFAC World Congress, Prague, Czech Republic, (CD-ROOM). 
  16. Rodrigues M. (2005): Diagnostic et commande active tolerante aux defauts appliques aux systemes decrits par des multi-modcles lineaires.- Ph.D. thesis, Centre de Recherche en Automatique de Nancy, UHP, Nancy, France. 
  17. Rodrigues M., Theilliol D., Adam-Medina M. and Sauter D. (2006): A fault detection and isolation scheme for industrial systems based on multiple operating models.- Contr. Eng. Pract. 
  18. Rodrigues M., Theilliol D. and Sauter D. (2005a): Design of an active fault tolerant control and polytopic unknown input observer for systems described by a multi-model representation. - Proc. 44th IEEE Conf. Decision and Control and European Control Conference ECC, Seville, Spain, (CD-ROM). 
  19. Rodrigues M., Theilliol D. and Sauter D. (2005b): Fault tolerant control design of nonlinear systems using LMI gain synthesis. - Proc. 16th IFAC World Congress, Prague, Czech Republic, (CD-ROM). 
  20. Rosinova D. and Vesely V. (2004): Robust static output feedback for discrete time systems LMI approach. - Periodica Polytechnica, Vol.48, No.3-4, pp.151-163. 
  21. Shin J-Y. (2003): Parameter transient behavior analysis on fault tolerant control system. - Tech. Rep. NASA-CR-2003-212682-NIA, Report No.2003-05, National Institute of Aerospace, Hampton, VA, USA. 
  22. Da Silva S., Lopes Junior V. and Assuncao E. (2004): Robust control to parametric uncertainties in smart structures using linear matrix inequalities. - J. Braz. Soc. Mech. Sci. Eng.,Vol.26, No.4, pp.430-437. 
  23. Theilliol D., Noura H. and Ponsart J.C. (2002): Fault diagnosis and accommodation of three-tank system bsaed on analytical redundancy. - ISA Trans., Vol.41, No.3, pp.365-382. 
  24. Theilliol D., Sauter D. and Ponsart J.C. (2003): A multiple model Based approach for Fault Tolerant Control in nonlinear systems. - Proc. IFAC Symp. Safeprocess, Washington D.C., (CD-ROM). 
  25. Veillette R. (2002): Design of reliable control systems. - IEEE Trans. Automat. Contr., Vol.37, pp.290-304. Zbl0745.93025
  26. Wan Z. and Kothare M.V. (2004): Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems. - IEEE Trans. Automat.Contr., Vol.49, No.7, pp.1172-1177. 
  27. Wu N.E., Zhang Y. and Zhou K. (2000): Detection, estimation and accommodation of loss of control effectiveness. - Int. J. Adapt. Contr. and Signal Process., Vol.14, No.7, pp.775-795. Zbl1016.93025
  28. Zhang Y. and Jiang J. (2001): Integrated active fault-tolerant control using IMM approach. - IEEE Trans. Aerospace Electron. Syst., Vol.37, No.4, pp.1221-1235. 
  29. Zhang Y. and Jiang J. (2003): Bibliographical review on reconfigurable fault-tolerant control systems. - Proc. IFAC Symp. Safeprocess, Washington, D.C., (CD-ROM). 
  30. Zhang Y., Jiang J., Yang Z. and Hussain Z. (2005): Managing performance degradation in fault tolerant control systems. - Proc. 16th IFAC World Congress, Prague, Czech Republic, (CD-ROM) 

Citations in EuDML Documents

top
  1. Valérie Dos Santos Martins, Mickael Rodrigues, Mamadou Diagne, A multi-model approach to Saint-Venant equations: A stability study by LMIs
  2. Didier Theilliol, Cédric Join, Youmin Zhang, Actuator fault tolerant control design based on a reconfigurable reference input
  3. Saúl Montes de Oca, Vicenç Puig, Marcin Witczak, Łukasz Dziekan, Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter
  4. Hicham Jamouli, Mohamed Amine El Hail, Dominique Sauter, A mixed active and passive GLR test for a fault tolerant control system
  5. Guillaume J.J. Ducard, SMAC-FDI: A single model active fault detection and isolation system for unmanned aircraft
  6. Krzysztof Patan, Marcin Witczak, Józef Korbicz, Towards robustness in neural network based fault diagnosis
  7. Marcello Bonfè, Paolo Castaldi, Nicola Mimmo, Silvio Simani, Active fault tolerant control of nonlinear systems: The cart-pole example
  8. Rodolfo Orjuela, Benoît Marx, José Ragot, Didier Maquin, Nonlinear system identification using heterogeneous multiple models
  9. Péter Gáspár, Zoltán Szabó, József Bokor, LPV design of fault-tolerant control for road vehicles

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.