Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems
International Journal of Applied Mathematics and Computer Science (2010)
- Volume: 20, Issue: 3, page 507-512
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ansaklis, P.J. and Michel, N. (1997). Linear Systems, McGrowHill, New York, NY.
- Basile, G. and Marro, G. (1969). Controlled and conditioned invariant subspaces in linear system theory, Journal of Optimization Theory and Applications 3(5): 306-315. Zbl0172.12501
- Basile, G. and Marro, G. (1982). Self-bounded controlled invariant subspaces: A straightforward approach to constrained controllability, Journal of Optimization Theory and Applications 38(1): 71-81. Zbl0471.93008
- Conte, G. and Perdon, A. (1988). A geometric approach to the theory of 2-D systems, IEEE Transactions on Automatics Control AC-33(10): 946-950. Zbl0658.93021
- Conte, G., Perdon, A. and Kaczorek, T. (1991). Geometric methods in the theory of singular 2D linear systems, Kybernetika 27(3): 262-270. Zbl0746.93021
- Fornasini, E. and Marchesini, G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties, Mathematical System Theory 12: 59-72. Zbl0392.93034
- Kaczorek, T. (1992). Linear Control Systems, Vol. 2, Wiley, New York, NY. Zbl0784.93002
- Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London. Zbl1005.68175
- Kaczorek, T. (2007). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London. Zbl1114.15019
- Kailath, T. (1980). Linear Systems, Prentice Hall, Englewood Cliffs, NJ. Zbl0454.93001
- Karmanciolu, A. and Lewis, F.L. (1990). A geometric approach to 2-D implicit systems, Proceedings of the 29th Conference on Decision and Control, Honolulu, HI, USA.
- Karmanciolu, A. and Lewis, F.L. (1992). Geometric theory for the singular Roesser model, IEEE Transactions on Automatics Control AC-37(6): 801-806. Zbl0755.93014
- Kurek, J. (1985). The general state-space model for a twodimensional linear digital systems, IEEE Transactions on Automatics Control AC-30(6): 600-602. Zbl0561.93034
- Malabre, M., Martínez-García, J. and Del-Muro-Cuéllar, B. (1997). On the fixed poles for disturbance rejection, Automatica 33(6): 1209-1211. Zbl0879.93007
- Ntogramatzis, L. (2010). A geometric theory for 2-D systems, Multidimensional Systems and Signal Processing, (submitted).
- Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-10. Zbl0304.68099
- Wonham, W.M. (1979). Linear Multivariable Control: A Geometric Approach, Springer, New York, NY. Zbl0424.93001
- Żak S. (2003). Systems and Control, Oxford University Press, New York, NY.