Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies

Vicenç Puig

International Journal of Applied Mathematics and Computer Science (2010)

  • Volume: 20, Issue: 4, page 619-635
  • ISSN: 1641-876X

Abstract

top
This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured and predicted behaviours obtained using a faultless system model, a fault can be indicated. Otherwise, nothing can be stated. The same principle can be used to identify interval models for fault detection and to develop methods for fault tolerance evaluation. Finally, some real applications will be used to illustrate the usefulness and performance of set-membership methods for FD and FTC.

How to cite

top

Vicenç Puig. "Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies." International Journal of Applied Mathematics and Computer Science 20.4 (2010): 619-635. <http://eudml.org/doc/208012>.

@article{VicençPuig2010,
abstract = {This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured and predicted behaviours obtained using a faultless system model, a fault can be indicated. Otherwise, nothing can be stated. The same principle can be used to identify interval models for fault detection and to develop methods for fault tolerance evaluation. Finally, some real applications will be used to illustrate the usefulness and performance of set-membership methods for FD and FTC.},
author = {Vicenç Puig},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {fault detection; fault-tolerant control; robustness; interval models; set-membership},
language = {eng},
number = {4},
pages = {619-635},
title = {Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies},
url = {http://eudml.org/doc/208012},
volume = {20},
year = {2010},
}

TY - JOUR
AU - Vicenç Puig
TI - Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies
JO - International Journal of Applied Mathematics and Computer Science
PY - 2010
VL - 20
IS - 4
SP - 619
EP - 635
AB - This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured and predicted behaviours obtained using a faultless system model, a fault can be indicated. Otherwise, nothing can be stated. The same principle can be used to identify interval models for fault detection and to develop methods for fault tolerance evaluation. Finally, some real applications will be used to illustrate the usefulness and performance of set-membership methods for FD and FTC.
LA - eng
KW - fault detection; fault-tolerant control; robustness; interval models; set-membership
UR - http://eudml.org/doc/208012
ER -

References

top
  1. Ackermann, J. (2002). Robust Control: The Parameter Space Approach, Springer, London. 
  2. Adrot, O. and Flaus, J.M. (2008). Fault detection based on uncertain models with bounded parameters and bounded parameter variations, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 7338-7343. 
  3. Alamo, T., Bravo, J. and Camacho, E. (2005). Guaranteed state estimation by zonotopes, Automatica 41(6): 1035-1043. Zbl1091.93038
  4. Armengol, J., Travé-Massuyès, L., Vehí, J. and de la Rosa, J.L. (2000). A survey on interval model simulators and their properties related to fault detection, Annual Reviews in Control 24: 31-39. 
  5. Armengol, J., Vehí, J., Sainz, M., Herrero, P. and Gelso, E. (2008). Squaltrack: A tool for robust fault detection, IEEE Transactions on Systems, Man, and Cybernetics: Part B 39(2): 475-488. 
  6. Bartyś, M. and de las Heras, S. (2003). Actuator simulation of the damadics benchmark actuator system, Proceedings of IFAC SAFEPROCESS'03, Washington, DC, USA. 
  7. Bartys, M., Patton, R., de las Heras, S., Syfert, M. and Quevedo, J. (2006). Introduction to the Damadics actuator FDI benchmark study, Control Engineering Practice 14(6): 577-596. 
  8. Bhattacharyya, S., Chapellat, H. and Keel, L. (1995). Robust Control: The Parametric Approach, Prentice Hall PTR, Upper Saddle River, NJ. Zbl0838.93008
  9. Bravo, J., Alamo, T. and Camacho, E. (2006). Bounded error identification of systems with time-varying parameters, IEEE Transactions on Automatic Control 51(7): 1144-1150. 
  10. Calafiore, G. (2001). A set-valued non-linear filter for robust localization, Proceedings of the European Control Conference (ECC'01), Porto, Portugal. 
  11. Calafiore, G., Campi, M.C. and Ghaoui, L.E. (2002). Identification of reliable predictor models for unknown systems: A data-consistency approach based on learning theory, Proceedings of the 15th IFAC World Congress, Barcelona, Spain. 
  12. Campi, M. and Calafiore, S.G. (2009). Interval predictor models: Identification and reliability, Automatica 45(8): 382-391. Zbl1158.93322
  13. Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J. and Martí, J. (2004). Optimal control of urban drainage systems: A case study, Control Engineering Practice 12(1): 1-9. 
  14. Chen, J. and Patton, R. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, MA. Zbl0920.93001
  15. Chilali, M. and Gahinet, P. (1996). H design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control 41(3): 358-367. Zbl0857.93048
  16. Chisci, L., Garulli, A. and Zappa, G. (1996). Recursive state bounding by parallelotopes, Automatica 32(3): 1049-1055. 
  17. Emami-Naeini, A., Akhter, M. and Rock, S. (1988). Effect of model uncertainty on failure detection: The threshold selector, IEEE Transactions on Automatic Control AC33(12): 1106-1115. Zbl0659.93062
  18. Escobet, T., Travé-Massuyès, L., Tornil, S. and Quevedo, J. (2001). Fault detection of a gas turbine fuel actuator based on qualitative causal models, Proceedings of the European Control Conference (ECC'01), Porto, Portugal. 
  19. Fagarasan, I., Ploix, S. and Gentil, S. (2004). Causal fault detection and isolation based on a set-membership approach, Automatica 40(12): 2099-2110. Zbl1075.93009
  20. Gelormino, M. and Ricker, N. (1994). Model-predictive control of a combined sewer system, International Journal of Control 59(3): 793-816. Zbl0800.93041
  21. Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY. 
  22. Guerra, P., Ocampo-Martinez, C. and Puig, V. (2007). Actuator fault tolerance evaluation of linear constrained robust model predictive control, Proceedings of the IEEE European Control Conference (ECC'07), Kos, Greece. 
  23. Guerra, P., Puig, V. and Ingimundarson, A. (2007). Robust fault detection using a consistency-based state estimation, Proceedings of the IEEE European Control Conference (ECC'07), Kos, Greece. 
  24. Guerra, P., Puig, V. and Witczak, M. (2008). Robust fault detection with unknown-input interval observers using zonotopes, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 5557-5562. 
  25. Hamelin, F. and Sauter, D. (2000). Robust fault detection in uncertain dynamic systems, Automatica 36(11): 1747-1754. Zbl0967.93032
  26. Hansen, E. (1992). Global Optimization Using Interval Analysis, Marcel Dekker, New York, NY. Zbl0762.90069
  27. Horak, D. (1988). Failure detection in dynamic systems with modelling errors, AIAA Journal of Guidance, Control and Dynamics 11(6): 508-516. 
  28. Ingimundarson, A., Bravo, J., Puig, V., Alamo, T. and Guerra, P. (2008). Robust fault detection using zonotope-based setmembership consistency test, Journal of Adaptive Control and Signal Processing 23(4): 311-330. Zbl1160.93318
  29. Isermann, R. (2006). Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, New York, NY. 
  30. Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed recursive non-linear state bounding using interval analysis, International Journal of Adaptive Control and Signal Processing 16(3): 193-218. Zbl1006.93067
  31. Kolev, L. (1993). Interval Methods for Circuit Analysis, World Scientific, Singapore. Zbl0925.94107
  32. Kuipers, B. (1994). Qualitative Reasoning-Modelling and Simulation with Incomplete Knowledge, MIT Press, Cambridge, MA. 
  33. Lydoire, F. and Poignet, P. (2005). Non-linear predictive control using constraints satisfaction, in C. Jermann, A. Neumaier and D. Sam (Eds.), Global Optimization and Constraints Satisfaction, Lecture Notes in Computer Science, Vol. 3478, Springer-Verlag, pp. 142-153. 
  34. Maksarov, D. and Norton, J. (1996). State bounding with ellipsoidal set description of the uncertainty, International Journal of Control 65(5): 847-866. Zbl0862.93038
  35. Marinaki, M. and Papageorgiou, M. (2005). Optimal Real-time Control of Sewer Networks, Springer, London. Zbl1074.93007
  36. Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, E. (1996). Bounding Approaches to System Identification, Plenum Press, New York, NY. Zbl0845.00024
  37. Montgomery, H. (1989). Computing the volume of a zonotope, American Mathematical Monthly 96: 431. 
  38. Ocampo, C., Ingimundarson, A., Puig, V. and Quevedo, J. (2008). Objective prioritization using lexicographic minimizers for MPC of sewer networks, IEEE Transactions on Control Systems Technology 16(1): 113-121. 
  39. Ocampo, C., Puig, V. and Quevedo, J. (2006). Actuator fault tolerance evaluation of constrained nonlinear MPC using constraints satisfaction, Proceedings of IFAC SAFEPROCESS'06, Beijing, China. 
  40. Ocampo, C., Tornil, S. and Puig, V. (2006). Robust fault detection using interval constraints satisfaction and set computations, Proceedings of IFAC SAFEPROCESS'06, Beijing, China. 
  41. Planchon, P. and Lunze, J. (2006). Robust diagnosis using state estimation, Proceedings of IFAC SAFEPROCESS'06, Beijing, China. 
  42. Ploix, S. and Adrot, O. (2006). Parity relations for linear uncertain dynamic systems, Automatica 42(6): 1553-1562. Zbl1128.93317
  43. Ploix, S., Adrot, O. and Ragot, J. (1999). Parameter uncertainty computation in static linear models, Proccedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA. 
  44. Puig, V. (2009). Fault detection and isolation in sewer networks, Proceedings of IFAC SAFEPROCESS'09, Barcelona, Spain. 
  45. Puig, V., Quevedo, J., Escobet, T., Nejjari, F. and de las Heras, S. (2008). Passive robust fault detection of dynamic processes using interval models, IEEE Transactions on Control Systems Technology 16(5): 1083-1089. 
  46. Puig, V., Saludes, J. and Quevedo, J. (2003). Worst-case simulation of discrete linear time-invariant interval dynamic systems, Reliable Computing 9(4): 251-290. Zbl1079.65128
  47. Puig, V., Stancu, A., Escobet, T., Nejjari, F., Quevedo, J. and Patton, R. (2006). Passive robust fault detection using interval observers: Application to the DAMADICS benchmark problem, Control Engineering Practice 14(6): 621-633. 
  48. Rambeaux, F., H. F. S. D. (2000). Optimal thresholding for robust fault detection of uncertain systems, International Journal of Robust and Nonlinear Control 10(14): 1155-1173. Zbl0965.93059
  49. Rinner, B. and Weiss, U. (2004). Online monitoring by dynamically refining imprecise models, IEEE Transactions on Systems, Man, and Cybernetics: Part B 34(4): 1811-1822. 
  50. Rugh, W. and Shamma, J. (2000). A survey of research on gainscheduling, Automatica 36(10): 1401-1425. Zbl0976.93002
  51. Sainz, M., Armengol, J. and Vehí, J. (2002). Fault detection and isolation of the three-tank system using the modal interval analysis, Journal of Process Control 12(2): 325-338. 
  52. Schilling, W., Anderson, B., Nyberg, U., Aspegren, H., Rauch, W. and Harremöes, P. (1996). Real-time control of wasterwater systems, Journal of Hydraulic Resources 34(6): 785-797. 
  53. Schütze, M., Campisano, A., Colas, H., Schilling W. and Vanrolleghem, P. (2004). Real time control of urban wastewater systems: Where do we stand today?, Journal of Hydrology 299: 335-348. 
  54. Schütze, M. and Beck, B. (2002). Modelling, Simulation and Control of Urban Wastewater Systems, Springer, London. 
  55. Shamma, J. (1997). Approximate set-value observer for nonlinear systems, IEEE Transactions on Automatic Control 42(5): 648-658. Zbl0897.93013
  56. Staroswiecki, M. (2003). Actuator faults and the linear quadratic control problem, Proceedings of the IEEE Conference on Decision and Control, Maui, HI, USA, pp. 959-965. 
  57. Tornil, S., Escobet, T. and Travé-Massuyès, L. (2003). Robust fault detection using interval models, Proceedings of the European Control Conference (ECC'03), Cambridge, UK. 
  58. Travé-Massuyes, L., Escobet, T., Pons, R. and Tornil, S. (2001). The CA EN diagnosis system and its automatic modelling method, Computación y Sistemas 5(2): 648-658, (in Spanish). 

Citations in EuDML Documents

top
  1. Hicham Jamouli, Mohamed Amine El Hail, Dominique Sauter, A mixed active and passive GLR test for a fault tolerant control system
  2. Ramatou Seydou, Tarek Raissi, Ali Zolghadri, Denis Efimov, Actuator fault diagnosis for flat systems: A constraint satisfaction approach
  3. Carine Jauberthie, Louise Travé-Massuyès, Nathalie Verdière, Set-membership identifiability of nonlinear models and related parameter estimation properties
  4. Ivo Punčochář, Miroslav Šimandl, On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems
  5. Boumedyen Boussaid, Christophe Aubrun, Mohamed Naceur Abdelkrim, Mohamed Koni Ben Gayed, Performance evaluation based fault tolerant control with actuator saturation avoidance

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.