Set-membership identifiability of nonlinear models and related parameter estimation properties

Carine Jauberthie; Louise Travé-Massuyès; Nathalie Verdière

International Journal of Applied Mathematics and Computer Science (2016)

  • Volume: 26, Issue: 4, page 803-813
  • ISSN: 1641-876X

Abstract

top
Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.

How to cite

top

Carine Jauberthie, Louise Travé-Massuyès, and Nathalie Verdière. "Set-membership identifiability of nonlinear models and related parameter estimation properties." International Journal of Applied Mathematics and Computer Science 26.4 (2016): 803-813. <http://eudml.org/doc/287180>.

@article{CarineJauberthie2016,
abstract = {Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.},
author = {Carine Jauberthie, Louise Travé-Massuyès, Nathalie Verdière},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {identifiability; bounded uncertainty; set-membership estimation; nonlinear dynamic models},
language = {eng},
number = {4},
pages = {803-813},
title = {Set-membership identifiability of nonlinear models and related parameter estimation properties},
url = {http://eudml.org/doc/287180},
volume = {26},
year = {2016},
}

TY - JOUR
AU - Carine Jauberthie
AU - Louise Travé-Massuyès
AU - Nathalie Verdière
TI - Set-membership identifiability of nonlinear models and related parameter estimation properties
JO - International Journal of Applied Mathematics and Computer Science
PY - 2016
VL - 26
IS - 4
SP - 803
EP - 813
AB - Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.
LA - eng
KW - identifiability; bounded uncertainty; set-membership estimation; nonlinear dynamic models
UR - http://eudml.org/doc/287180
ER -

References

top
  1. Alamo, T., Bravo, J.M. and Camacho, E.F. (2005). Guaranteed state estimation by zonotopes, Automatica 41(6): 1035-1043. Zbl1091.93038
  2. Auer, E., Kiel, S. and Rauh, A. (2013). A verified method for solving piecewise smooth initial value problems, International Journal of Applied Mathematics and Computer Science 23(4): 731-747, DOI: 10.2478/amcs-2013-0055. Zbl1287.65056
  3. Boulier, F. (1994). Study and Implementation of Some Algorithms in Differential Algebra, Ph.D. thesis, Université des Sciences et Technologie de Lille, Lille. 
  4. Bourbaki, N. (1989). Elements of Mathematics, Springer-Verlag, Berlin/Heidelberg. Zbl0673.00001
  5. Braems, I., Jaulin, L., Kieffer, M. and Walter, E. (2001). Guaranteed numerical alternatives to structural identifiability testing, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3122-3127. 
  6. Chabert, G. and Jaulin, L. (2009). Contractor programming, Artificial Intelligence 173(11): 1079-1100. Zbl1191.68628
  7. Chiscii, L., Garulli, A. and Zappa, G. (1996). Recursive state bounding by parallelotopes, Automatica 32(7): 1049-1055. 
  8. Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (2001a). Some effective approaches to check identifiability of uncontrolled nonlinear systems, Mathematics and Computers in Simulation 57(1-2): 35-44. Zbl0984.93011
  9. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C. and Petitot, M. (2001b). An algorithm to test identifiability of non-linear systems, Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, St. Petersburg, Russia, Vol. 7, pp. 174-178. 
  10. Herrero, P., Delaunay, B., Jaulin, L., Georgiou, P., Oliver, N. and Toumazou, C. (2016). Robust set-membership parameter estimation of the glucose minimal model, International Journal of Adaptive Control and Signal Processing 30(2): 173-185. Zbl1348.93250
  11. Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2011). Set-membership identifiability: Definitions and analysis, Proceedings of the 18th IFAC World Congress, Milan, Italy, pp. 12024-12029. 
  12. Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2013). Fault detection and identification relying on set-membership identifiability, Annual Reviews in Control 37(1): 129-136. 
  13. Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, Londres. Zbl1023.65037
  14. Jaulin, L. and Walter, E. (1993). Set inversion via interval analysis for nonlinear bounded-error estimation, Automatica 29(4): 1053-1064. Zbl0776.93001
  15. Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed recursive nonlinear state bounding using interval analysis, International Journal of Adaptive Control and Signal Processing 6(3): 193-218. Zbl1006.93067
  16. Kieffer, M., Jaulin, L., Walter, É. and Meizel, D. (2000). Robust autonomous robot localization using interval analysis, Reliable Computing 6(3): 337-362. Zbl0978.70004
  17. Kieffer, M. and Walter, E. (2011). Guaranteed estimation of the parameters of nonlinear continuous-time models: Contributions of interval analysis, International Journal of Adaptive Control and Signal Processing 25(3): 191-207. Zbl1222.93216
  18. Kolchin, E. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York, NY. Zbl0264.12102
  19. Kurzhanski, A.B. and Valyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Nelson Thornes, Birkhäuser. Zbl0865.93001
  20. Lagrange, S., Delanoue, N. and Jaulin, L. (2008). Injectivity analysis using interval analysis: Application to structural identifiability, Automatica 44(11): 2959-2962. Zbl1152.93347
  21. Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265-276. Zbl0795.93026
  22. Maiga, M., Ramdani, N. and Travé-Massuyès, L. (2013). A fast method for solving guard set intersection in nonlinear hybrid reachability, Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, Firenze, Italy, pp. 508-513. Zbl1302.65123
  23. Maiga, M., Ramdani, N., Travé-Massuyès, L. and Combastel, C. (2016). A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Transactions on Automatic Control 61(9): 2341-2356, DOI:10.1109/TAC.2015.2491740. Zbl1302.65123
  24. Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, É. (2013). Bounding Approaches to System Identification, Springer Science & Business Media, New York, NY. Zbl0845.00024
  25. Munkres, J.R. (1975). Topology-A First Course, Prentice Hall, Upper Saddle River, NJ. Zbl0306.54001
  26. Nelles, O. (2002). Nonlinear System Identification, Springer-Verlag, Berlin/Heidelberg. Zbl0963.93001
  27. Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1): 21-33. Zbl0393.92008
  28. Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619-635, DOI: 10.2478/v10006-010-0046-y. Zbl1214.93061
  29. Raïssi, T., Ramdani, N. and Candau, Y. (2004). Set-membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40(10): 1771-1777. Zbl1067.93019
  30. Ravanbod, L., Verdière, N. and Jauberthie, C. (2014). Determination of set-membership identifiability sets, Mathematics in Computer Science 8(3-4): 391-406. Zbl1302.65124
  31. Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849-862, DOI: 10.1515/amcs-2015-0061. Zbl1347.93107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.