Set-membership identifiability of nonlinear models and related parameter estimation properties
Carine Jauberthie; Louise Travé-Massuyès; Nathalie Verdière
International Journal of Applied Mathematics and Computer Science (2016)
- Volume: 26, Issue: 4, page 803-813
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topCarine Jauberthie, Louise Travé-Massuyès, and Nathalie Verdière. "Set-membership identifiability of nonlinear models and related parameter estimation properties." International Journal of Applied Mathematics and Computer Science 26.4 (2016): 803-813. <http://eudml.org/doc/287180>.
@article{CarineJauberthie2016,
abstract = {Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.},
author = {Carine Jauberthie, Louise Travé-Massuyès, Nathalie Verdière},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {identifiability; bounded uncertainty; set-membership estimation; nonlinear dynamic models},
language = {eng},
number = {4},
pages = {803-813},
title = {Set-membership identifiability of nonlinear models and related parameter estimation properties},
url = {http://eudml.org/doc/287180},
volume = {26},
year = {2016},
}
TY - JOUR
AU - Carine Jauberthie
AU - Louise Travé-Massuyès
AU - Nathalie Verdière
TI - Set-membership identifiability of nonlinear models and related parameter estimation properties
JO - International Journal of Applied Mathematics and Computer Science
PY - 2016
VL - 26
IS - 4
SP - 803
EP - 813
AB - Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.
LA - eng
KW - identifiability; bounded uncertainty; set-membership estimation; nonlinear dynamic models
UR - http://eudml.org/doc/287180
ER -
References
top- Alamo, T., Bravo, J.M. and Camacho, E.F. (2005). Guaranteed state estimation by zonotopes, Automatica 41(6): 1035-1043. Zbl1091.93038
- Auer, E., Kiel, S. and Rauh, A. (2013). A verified method for solving piecewise smooth initial value problems, International Journal of Applied Mathematics and Computer Science 23(4): 731-747, DOI: 10.2478/amcs-2013-0055. Zbl1287.65056
- Boulier, F. (1994). Study and Implementation of Some Algorithms in Differential Algebra, Ph.D. thesis, Université des Sciences et Technologie de Lille, Lille.
- Bourbaki, N. (1989). Elements of Mathematics, Springer-Verlag, Berlin/Heidelberg. Zbl0673.00001
- Braems, I., Jaulin, L., Kieffer, M. and Walter, E. (2001). Guaranteed numerical alternatives to structural identifiability testing, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3122-3127.
- Chabert, G. and Jaulin, L. (2009). Contractor programming, Artificial Intelligence 173(11): 1079-1100. Zbl1191.68628
- Chiscii, L., Garulli, A. and Zappa, G. (1996). Recursive state bounding by parallelotopes, Automatica 32(7): 1049-1055.
- Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (2001a). Some effective approaches to check identifiability of uncontrolled nonlinear systems, Mathematics and Computers in Simulation 57(1-2): 35-44. Zbl0984.93011
- Denis-Vidal, L., Joly-Blanchard, G., Noiret, C. and Petitot, M. (2001b). An algorithm to test identifiability of non-linear systems, Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, St. Petersburg, Russia, Vol. 7, pp. 174-178.
- Herrero, P., Delaunay, B., Jaulin, L., Georgiou, P., Oliver, N. and Toumazou, C. (2016). Robust set-membership parameter estimation of the glucose minimal model, International Journal of Adaptive Control and Signal Processing 30(2): 173-185. Zbl1348.93250
- Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2011). Set-membership identifiability: Definitions and analysis, Proceedings of the 18th IFAC World Congress, Milan, Italy, pp. 12024-12029.
- Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2013). Fault detection and identification relying on set-membership identifiability, Annual Reviews in Control 37(1): 129-136.
- Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, Londres. Zbl1023.65037
- Jaulin, L. and Walter, E. (1993). Set inversion via interval analysis for nonlinear bounded-error estimation, Automatica 29(4): 1053-1064. Zbl0776.93001
- Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed recursive nonlinear state bounding using interval analysis, International Journal of Adaptive Control and Signal Processing 6(3): 193-218. Zbl1006.93067
- Kieffer, M., Jaulin, L., Walter, É. and Meizel, D. (2000). Robust autonomous robot localization using interval analysis, Reliable Computing 6(3): 337-362. Zbl0978.70004
- Kieffer, M. and Walter, E. (2011). Guaranteed estimation of the parameters of nonlinear continuous-time models: Contributions of interval analysis, International Journal of Adaptive Control and Signal Processing 25(3): 191-207. Zbl1222.93216
- Kolchin, E. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York, NY. Zbl0264.12102
- Kurzhanski, A.B. and Valyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Nelson Thornes, Birkhäuser. Zbl0865.93001
- Lagrange, S., Delanoue, N. and Jaulin, L. (2008). Injectivity analysis using interval analysis: Application to structural identifiability, Automatica 44(11): 2959-2962. Zbl1152.93347
- Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265-276. Zbl0795.93026
- Maiga, M., Ramdani, N. and Travé-Massuyès, L. (2013). A fast method for solving guard set intersection in nonlinear hybrid reachability, Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, Firenze, Italy, pp. 508-513. Zbl1302.65123
- Maiga, M., Ramdani, N., Travé-Massuyès, L. and Combastel, C. (2016). A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Transactions on Automatic Control 61(9): 2341-2356, DOI:10.1109/TAC.2015.2491740. Zbl1302.65123
- Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, É. (2013). Bounding Approaches to System Identification, Springer Science & Business Media, New York, NY. Zbl0845.00024
- Munkres, J.R. (1975). Topology-A First Course, Prentice Hall, Upper Saddle River, NJ. Zbl0306.54001
- Nelles, O. (2002). Nonlinear System Identification, Springer-Verlag, Berlin/Heidelberg. Zbl0963.93001
- Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1): 21-33. Zbl0393.92008
- Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619-635, DOI: 10.2478/v10006-010-0046-y. Zbl1214.93061
- Raïssi, T., Ramdani, N. and Candau, Y. (2004). Set-membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40(10): 1771-1777. Zbl1067.93019
- Ravanbod, L., Verdière, N. and Jauberthie, C. (2014). Determination of set-membership identifiability sets, Mathematics in Computer Science 8(3-4): 391-406. Zbl1302.65124
- Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849-862, DOI: 10.1515/amcs-2015-0061. Zbl1347.93107
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.