# Continuation of holomorphic solutions to convolution equations in complex domains

Ryuichi Ishimura; Jun-ichi Okada; Yasunori Okada

Annales Polonici Mathematici (2000)

- Volume: 74, Issue: 1, page 105-115
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topIshimura, Ryuichi, Okada, Jun-ichi, and Okada, Yasunori. "Continuation of holomorphic solutions to convolution equations in complex domains." Annales Polonici Mathematici 74.1 (2000): 105-115. <http://eudml.org/doc/208359>.

@article{Ishimura2000,

abstract = {For an analytic functional $S$ on $ℂ^n$, we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in $ℂ^n$. We determine the directions in which every solution can be continued analytically, by using the characteristic set.},

author = {Ishimura, Ryuichi, Okada, Jun-ichi, Okada, Yasunori},

journal = {Annales Polonici Mathematici},

keywords = {convolution equation; analytic continuation; characteristic set; analytic functional},

language = {eng},

number = {1},

pages = {105-115},

title = {Continuation of holomorphic solutions to convolution equations in complex domains},

url = {http://eudml.org/doc/208359},

volume = {74},

year = {2000},

}

TY - JOUR

AU - Ishimura, Ryuichi

AU - Okada, Jun-ichi

AU - Okada, Yasunori

TI - Continuation of holomorphic solutions to convolution equations in complex domains

JO - Annales Polonici Mathematici

PY - 2000

VL - 74

IS - 1

SP - 105

EP - 115

AB - For an analytic functional $S$ on $ℂ^n$, we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in $ℂ^n$. We determine the directions in which every solution can be continued analytically, by using the characteristic set.

LA - eng

KW - convolution equation; analytic continuation; characteristic set; analytic functional

UR - http://eudml.org/doc/208359

ER -

## References

top- [A] T. Aoki, Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math. 72 (1988), 261-283. Zbl0702.35253
- [I1] R. Ishimura, A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 195-199. Zbl0773.32006
- [I2] R. Ishimura, The characteristic set for differential-difference equations in real domains, Kyushu J. Math. 53 (1999), 107-114. Zbl0933.35200
- [I-O1] R. Ishimura and Y. Okada, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France 122 (1994), 413-433. Zbl0826.35144
- [I-O2] R. Ishimura and Y. Okada, The micro-support of the complex defined by a convolution operator in tube domains, in: Singularities and Differential Equations, Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 105-114. Zbl0921.32003
- [I-O3] R. Ishimura and Y. Okada, Examples of convolution operators with described characteristics, in preparation.
- [I-Oj] R. Ishimura and Y. Okada, Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. 48 (1994), 257-263.
- [Ka] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 467-517. Zbl0212.46101
- [Ki] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356. Zbl0189.40502
- [Ko] Yu. F. Korobeĭnik, Convolution equations in the complex domain, Math. USSR-Sb. 36 (1985), 171-193.
- [Kr] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of ${\u2102}^{n}$, Math. USSR-Izv. 36 (1991), 497-517. Zbl0723.45005
- [Ll-G] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. Wiss. 282, Springer, Berlin, 1986. Zbl0583.32001
- [Lv] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monographs, Amer. Math. Soc., Providence, 1964.
- [R] L. I. Ronkin, Functions of Completely Regular Growth, Kluwer, 1992. Zbl0754.32001
- [Sé] A. Sébbar, Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, in: Séminaire Lelong-Skoda, Lecture Notes in Math. 822, Springer, Berlin, 1980, 199-220.
- [V] A. Vidras, Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland. Zbl0842.32001
- [Z] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648. Zbl0213.37004

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.