Continuation of holomorphic solutions to convolution equations in complex domains

Ryuichi Ishimura; Jun-ichi Okada; Yasunori Okada

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 105-115
  • ISSN: 0066-2216

Abstract

top
For an analytic functional S on n , we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in n . We determine the directions in which every solution can be continued analytically, by using the characteristic set.

How to cite

top

Ishimura, Ryuichi, Okada, Jun-ichi, and Okada, Yasunori. "Continuation of holomorphic solutions to convolution equations in complex domains." Annales Polonici Mathematici 74.1 (2000): 105-115. <http://eudml.org/doc/208359>.

@article{Ishimura2000,
abstract = {For an analytic functional $S$ on $ℂ^n$, we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in $ℂ^n$. We determine the directions in which every solution can be continued analytically, by using the characteristic set.},
author = {Ishimura, Ryuichi, Okada, Jun-ichi, Okada, Yasunori},
journal = {Annales Polonici Mathematici},
keywords = {convolution equation; analytic continuation; characteristic set; analytic functional},
language = {eng},
number = {1},
pages = {105-115},
title = {Continuation of holomorphic solutions to convolution equations in complex domains},
url = {http://eudml.org/doc/208359},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Ishimura, Ryuichi
AU - Okada, Jun-ichi
AU - Okada, Yasunori
TI - Continuation of holomorphic solutions to convolution equations in complex domains
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 105
EP - 115
AB - For an analytic functional $S$ on $ℂ^n$, we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in $ℂ^n$. We determine the directions in which every solution can be continued analytically, by using the characteristic set.
LA - eng
KW - convolution equation; analytic continuation; characteristic set; analytic functional
UR - http://eudml.org/doc/208359
ER -

References

top
  1. [A] T. Aoki, Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math. 72 (1988), 261-283. Zbl0702.35253
  2. [I1] R. Ishimura, A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 195-199. Zbl0773.32006
  3. [I2] R. Ishimura, The characteristic set for differential-difference equations in real domains, Kyushu J. Math. 53 (1999), 107-114. Zbl0933.35200
  4. [I-O1] R. Ishimura and Y. Okada, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France 122 (1994), 413-433. Zbl0826.35144
  5. [I-O2] R. Ishimura and Y. Okada, The micro-support of the complex defined by a convolution operator in tube domains, in: Singularities and Differential Equations, Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 105-114. Zbl0921.32003
  6. [I-O3] R. Ishimura and Y. Okada, Examples of convolution operators with described characteristics, in preparation. 
  7. [I-Oj] R. Ishimura and Y. Okada, Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. 48 (1994), 257-263. 
  8. [Ka] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 467-517. Zbl0212.46101
  9. [Ki] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356. Zbl0189.40502
  10. [Ko] Yu. F. Korobeĭnik, Convolution equations in the complex domain, Math. USSR-Sb. 36 (1985), 171-193. 
  11. [Kr] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of n , Math. USSR-Izv. 36 (1991), 497-517. Zbl0723.45005
  12. [Ll-G] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. Wiss. 282, Springer, Berlin, 1986. Zbl0583.32001
  13. [Lv] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monographs, Amer. Math. Soc., Providence, 1964. 
  14. [R] L. I. Ronkin, Functions of Completely Regular Growth, Kluwer, 1992. Zbl0754.32001
  15. [Sé] A. Sébbar, Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, in: Séminaire Lelong-Skoda, Lecture Notes in Math. 822, Springer, Berlin, 1980, 199-220. 
  16. [V] A. Vidras, Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland. Zbl0842.32001
  17. [Z] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648. Zbl0213.37004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.