The existence and the continuation of holomorphic solutions for convolution equations in tube domains

Ryuichi Ishimura; Yasunori Okada

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 3, page 413-433
  • ISSN: 0037-9484

How to cite

top

Ishimura, Ryuichi, and Okada, Yasunori. "The existence and the continuation of holomorphic solutions for convolution equations in tube domains." Bulletin de la Société Mathématique de France 122.3 (1994): 413-433. <http://eudml.org/doc/87698>.

@article{Ishimura1994,
author = {Ishimura, Ryuichi, Okada, Yasunori},
journal = {Bulletin de la Société Mathématique de France},
keywords = {solvability of the convolution equation; analytic continuation},
language = {eng},
number = {3},
pages = {413-433},
publisher = {Société mathématique de France},
title = {The existence and the continuation of holomorphic solutions for convolution equations in tube domains},
url = {http://eudml.org/doc/87698},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Ishimura, Ryuichi
AU - Okada, Yasunori
TI - The existence and the continuation of holomorphic solutions for convolution equations in tube domains
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 3
SP - 413
EP - 433
LA - eng
KW - solvability of the convolution equation; analytic continuation
UR - http://eudml.org/doc/87698
ER -

References

top
  1. [1] AVANISSIAN (V.). — Fonctions plurisousharmoniques, différence de deux fonctions plurisousharmoniques de type exponentiel, C. R. Acad. Sc., Paris, t. 252, 1961, p. 499-500. Zbl0173.39605MR23 #A1841
  2. [2] AOKI (T.). — Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math., t. 72, 1988, p. 261-283. Zbl0702.35253MR90e:35007
  3. [3] BERENSTEIN (C.A.), GAY (R.) and VIDRAS (A.). — Division theorems in the spaces of entire functions with growth conditions and their applications to PDE of infinite order, preprint. 
  4. [4] BERENSTEIN (C.A.) and STRUPPA (D.C.). — A remark on «convolutors in spaces of holomorphic functions», Lecture Notes in Math., t. 1276, 1987, p. 276-280. Zbl0628.42009MR89e:32004
  5. [5] BERENSTEIN (C.A.) and STRUPPA (D.C.). — Solutions of convolution equations in convex sets, Amer. J. Math., t. 109, 1987, p. 521-543. Zbl0628.46036MR89c:32006
  6. [6] BONY (J.M.) et SCHAPIRA (P.). — Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math., t. 17, 1972, p. 95-105. Zbl0225.35008MR49 #3305
  7. [7] EPIFANOV (O.V.). — Solvability of convolution equations in convex domains, Soviet Math. Notes, t. 15, 1974, p. 472-477. Zbl0322.46056MR51 #3946
  8. [8] EPIFANOV (O.V.). — On the surjectivity of convolution operators in complex domains, Soviet Math. Notes, t. 16, 1974, p. 837-841. Zbl0331.47026MR52 #8431
  9. [9] EPIFANOV (O.V.). — Criteria for a convolution to be epimorphic in arbitrary regions of the complex plaine, Soviet Math. Notes, t. 31, 1982, p. 354-359. Zbl0509.47042MR84h:30082
  10. [10] FAVOROV (YU). — On the addition of the indicators of entire and subharmonic functions of several variables, Mat. Sb., t. 105, 147, 1978, p. 128-140. Zbl0374.32001MR57 #16652
  11. [11] FRANKEN (U.) and MEISE (R.). — Generarized Fourier expansions for zero-solutions of surjective convolution operators on Dʹ (ℝ) and Dʹω (ℝ), preprint. 
  12. [12] HÖRMANDER (L.). — On the range of convolution operators, Ann. of Math., t. 76, 1962, p. 148-170. Zbl0109.08501MR25 #5379
  13. [13] HÖRMANDER (L.). — An introduction to complex analysis in several variables. - Van Nostrand Reinhold, 1966. Zbl0138.06203
  14. [14] ISHIMURA (R.). — Théorèmes d'existence et d'approximation pour les équations aux dérivées partielles linéaires d'ordre infini, Publ. RIMS Kyoto Univ., t. 32, 1980, p. 393-415. Zbl0459.35015MR82f:35048
  15. [15] ISHIMURA (R.). — Existence locale de solutions holomorphes pour les équations différentielles d'ordre infini, Ann. Inst. Fourier, Grenoble, t. 35, 3, 1985, p. 49-57. Zbl0544.35085MR87c:35005
  16. [16] ISHIMURA (R.). — A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ., t. 46, 1992, p. 195-199. Zbl0773.32006MR93k:58210
  17. [17] KANEKO (A.). — Introduction to hyperfunctions. - Kluwer Acad. Publ., 1988. Zbl0687.46027MR90m:32017
  18. [18] KASHIWARA (M.) and SCHAPIRA (P.). — Sheaves on manifolds. - Grundlehren Math. Wiss., Berlin, Heidelberg, New York, Springer, 292, 1990. Zbl0709.18001MR92a:58132
  19. [19] KAWAI (T.). — On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., t. 17, 1970, p. 467-517. Zbl0212.46101MR45 #7252
  20. [20] KISELMAN (C.O.). &#x2014; Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France, t. 97, 1969, p. 329-356. Zbl0189.40502MR42 #2161
  21. [21] KOROBE&#x012C;NIK (YU.F.). &#x2014; On solutions of some functional equations in classes of functions analytic in convex domains, Mat. USSR Sb., t. 4, 1968, p. 203-211. 
  22. [22] KOROBE&#x012C;NIK (YU.F.). &#x2014; The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity, Mat. USSR Sb., t. 9, 1969, p. 53-71. Zbl0223.34015
  23. [23] KOROBE&#x012C;NIK (YU.F.). &#x2014; Convolution equations in the complex domain, Mat. Sb., t. 55, 1985, p. 171-193. Zbl0587.45006
  24. [24] LELONG (P.) and GRUMAN (L.). &#x2014; Entire functions of several complex variables. &#x2014; Grundlehren Math. Wiss., Berlin, Heidelberg, New York, Springer 282, 1986. Zbl0583.32001MR87j:32001
  25. [25] LEVIN (B.JA).&#x2014; Distributions of zeros of entire functions, Transl. Math. Mono. Amer. Math. Soc., Providence, Rhode Island 5, 1964. 
  26. [26] MALGRANGE (B.).&#x2014; Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, t. 6, 1955-1956, p. 271-354. Zbl0071.09002MR19,280a
  27. [27] MÉRIL (A.) and STRUPPA (D.C.).&#x2014; Convolutors in spaces of holomorphic functions, Lecture Notes in Math., t. 1276, 1987, p. 253-275. Zbl0628.42008MR89e:32003
  28. [28] MOMM (S.).&#x2014; Convex univalent functions and continuous linear right inverses, J. Funct. Anal., t. 103, 1992, p. 85-103. Zbl0771.46016MR93m:30057
  29. [29] MORZHAKOV (V.V.).&#x2014; Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in &#x2102;n, Soviet Math. Notes, t. 16, 1974, p. 846-851. Zbl0322.45010
  30. [30] MORZHAKOV (V.V.). &#x2014; On epimorphicity of a convolution operator in a convex domains in &#x2102;l, Math. USSR Sb., t. 60, 1988, p. 347-364. Zbl0678.46032MR89b:32007
  31. [31] MORZHAKOV (V.V.).&#x2014; Convolution equations in convex domains of &#x2102;n, in Compl. Anal. and Appl. '87, Sofia, 1989, p. 360-364. MR1127654
  32. [32] NAPALKOV (V.V.).&#x2014; Convolution equations in multidimensional spaces, Mat. Zametki, t. 25, 1979, p. 761-774. Zbl0403.45005MR80m:32003
  33. [33] OKADA (Y.).&#x2014; Solvability of convolution operators, to appear in Publ. RIMS Kyoto Univ., t. 30, 1994. Zbl0808.46057MR94m:46077
  34. [34] SÉBBAR (A.).&#x2014; Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, Séminaire Lelong-Skoda, Lecture Notes in Math., Berlin, Heidelberg, New York, Springer, t. 822, 1980, p. 199-220. Zbl0451.32009MR82f:35049
  35. [35] TKA&#x010C;ENKO (T.A.).&#x2014; Equations of convolution type in spaces of analytic functionals, Math. USSR Izv., t. 11, 1977, p. 361-374. Zbl0378.45004
  36. [36] VIDRAS (A.).&#x2014; Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland, 1992. 
  37. [37] ZERNER (M.).&#x2014; Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C.R. Acad. Sc., Paris, t. 272, 1971, p. 1646-1648. Zbl0213.37004MR55 #5995

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.