The existence and the continuation of holomorphic solutions for convolution equations in tube domains
Ryuichi Ishimura; Yasunori Okada
Bulletin de la Société Mathématique de France (1994)
- Volume: 122, Issue: 3, page 413-433
- ISSN: 0037-9484
Access Full Article
topHow to cite
topIshimura, Ryuichi, and Okada, Yasunori. "The existence and the continuation of holomorphic solutions for convolution equations in tube domains." Bulletin de la Société Mathématique de France 122.3 (1994): 413-433. <http://eudml.org/doc/87698>.
@article{Ishimura1994,
author = {Ishimura, Ryuichi, Okada, Yasunori},
journal = {Bulletin de la Société Mathématique de France},
keywords = {solvability of the convolution equation; analytic continuation},
language = {eng},
number = {3},
pages = {413-433},
publisher = {Société mathématique de France},
title = {The existence and the continuation of holomorphic solutions for convolution equations in tube domains},
url = {http://eudml.org/doc/87698},
volume = {122},
year = {1994},
}
TY - JOUR
AU - Ishimura, Ryuichi
AU - Okada, Yasunori
TI - The existence and the continuation of holomorphic solutions for convolution equations in tube domains
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 3
SP - 413
EP - 433
LA - eng
KW - solvability of the convolution equation; analytic continuation
UR - http://eudml.org/doc/87698
ER -
References
top- [1] AVANISSIAN (V.). — Fonctions plurisousharmoniques, différence de deux fonctions plurisousharmoniques de type exponentiel, C. R. Acad. Sc., Paris, t. 252, 1961, p. 499-500. Zbl0173.39605MR23 #A1841
- [2] AOKI (T.). — Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math., t. 72, 1988, p. 261-283. Zbl0702.35253MR90e:35007
- [3] BERENSTEIN (C.A.), GAY (R.) and VIDRAS (A.). — Division theorems in the spaces of entire functions with growth conditions and their applications to PDE of infinite order, preprint.
- [4] BERENSTEIN (C.A.) and STRUPPA (D.C.). — A remark on «convolutors in spaces of holomorphic functions», Lecture Notes in Math., t. 1276, 1987, p. 276-280. Zbl0628.42009MR89e:32004
- [5] BERENSTEIN (C.A.) and STRUPPA (D.C.). — Solutions of convolution equations in convex sets, Amer. J. Math., t. 109, 1987, p. 521-543. Zbl0628.46036MR89c:32006
- [6] BONY (J.M.) et SCHAPIRA (P.). — Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math., t. 17, 1972, p. 95-105. Zbl0225.35008MR49 #3305
- [7] EPIFANOV (O.V.). — Solvability of convolution equations in convex domains, Soviet Math. Notes, t. 15, 1974, p. 472-477. Zbl0322.46056MR51 #3946
- [8] EPIFANOV (O.V.). — On the surjectivity of convolution operators in complex domains, Soviet Math. Notes, t. 16, 1974, p. 837-841. Zbl0331.47026MR52 #8431
- [9] EPIFANOV (O.V.). — Criteria for a convolution to be epimorphic in arbitrary regions of the complex plaine, Soviet Math. Notes, t. 31, 1982, p. 354-359. Zbl0509.47042MR84h:30082
- [10] FAVOROV (YU). — On the addition of the indicators of entire and subharmonic functions of several variables, Mat. Sb., t. 105, 147, 1978, p. 128-140. Zbl0374.32001MR57 #16652
- [11] FRANKEN (U.) and MEISE (R.). — Generarized Fourier expansions for zero-solutions of surjective convolution operators on Dʹ (ℝ) and Dʹω (ℝ), preprint.
- [12] HÖRMANDER (L.). — On the range of convolution operators, Ann. of Math., t. 76, 1962, p. 148-170. Zbl0109.08501MR25 #5379
- [13] HÖRMANDER (L.). — An introduction to complex analysis in several variables. - Van Nostrand Reinhold, 1966. Zbl0138.06203
- [14] ISHIMURA (R.). — Théorèmes d'existence et d'approximation pour les équations aux dérivées partielles linéaires d'ordre infini, Publ. RIMS Kyoto Univ., t. 32, 1980, p. 393-415. Zbl0459.35015MR82f:35048
- [15] ISHIMURA (R.). — Existence locale de solutions holomorphes pour les équations différentielles d'ordre infini, Ann. Inst. Fourier, Grenoble, t. 35, 3, 1985, p. 49-57. Zbl0544.35085MR87c:35005
- [16] ISHIMURA (R.). — A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ., t. 46, 1992, p. 195-199. Zbl0773.32006MR93k:58210
- [17] KANEKO (A.). — Introduction to hyperfunctions. - Kluwer Acad. Publ., 1988. Zbl0687.46027MR90m:32017
- [18] KASHIWARA (M.) and SCHAPIRA (P.). — Sheaves on manifolds. - Grundlehren Math. Wiss., Berlin, Heidelberg, New York, Springer, 292, 1990. Zbl0709.18001MR92a:58132
- [19] KAWAI (T.). — On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., t. 17, 1970, p. 467-517. Zbl0212.46101MR45 #7252
- [20] KISELMAN (C.O.). — Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France, t. 97, 1969, p. 329-356. Zbl0189.40502MR42 #2161
- [21] KOROBEĬNIK (YU.F.). — On solutions of some functional equations in classes of functions analytic in convex domains, Mat. USSR Sb., t. 4, 1968, p. 203-211.
- [22] KOROBEĬNIK (YU.F.). — The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity, Mat. USSR Sb., t. 9, 1969, p. 53-71. Zbl0223.34015
- [23] KOROBEĬNIK (YU.F.). — Convolution equations in the complex domain, Mat. Sb., t. 55, 1985, p. 171-193. Zbl0587.45006
- [24] LELONG (P.) and GRUMAN (L.). — Entire functions of several complex variables. — Grundlehren Math. Wiss., Berlin, Heidelberg, New York, Springer 282, 1986. Zbl0583.32001MR87j:32001
- [25] LEVIN (B.JA).— Distributions of zeros of entire functions, Transl. Math. Mono. Amer. Math. Soc., Providence, Rhode Island 5, 1964.
- [26] MALGRANGE (B.).— Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, t. 6, 1955-1956, p. 271-354. Zbl0071.09002MR19,280a
- [27] MÉRIL (A.) and STRUPPA (D.C.).— Convolutors in spaces of holomorphic functions, Lecture Notes in Math., t. 1276, 1987, p. 253-275. Zbl0628.42008MR89e:32003
- [28] MOMM (S.).— Convex univalent functions and continuous linear right inverses, J. Funct. Anal., t. 103, 1992, p. 85-103. Zbl0771.46016MR93m:30057
- [29] MORZHAKOV (V.V.).— Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in ℂn, Soviet Math. Notes, t. 16, 1974, p. 846-851. Zbl0322.45010
- [30] MORZHAKOV (V.V.). — On epimorphicity of a convolution operator in a convex domains in ℂl, Math. USSR Sb., t. 60, 1988, p. 347-364. Zbl0678.46032MR89b:32007
- [31] MORZHAKOV (V.V.).— Convolution equations in convex domains of ℂn, in Compl. Anal. and Appl. '87, Sofia, 1989, p. 360-364. MR1127654
- [32] NAPALKOV (V.V.).— Convolution equations in multidimensional spaces, Mat. Zametki, t. 25, 1979, p. 761-774. Zbl0403.45005MR80m:32003
- [33] OKADA (Y.).— Solvability of convolution operators, to appear in Publ. RIMS Kyoto Univ., t. 30, 1994. Zbl0808.46057MR94m:46077
- [34] SÉBBAR (A.).— Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, Séminaire Lelong-Skoda, Lecture Notes in Math., Berlin, Heidelberg, New York, Springer, t. 822, 1980, p. 199-220. Zbl0451.32009MR82f:35049
- [35] TKAČENKO (T.A.).— Equations of convolution type in spaces of analytic functionals, Math. USSR Izv., t. 11, 1977, p. 361-374. Zbl0378.45004
- [36] VIDRAS (A.).— Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland, 1992.
- [37] ZERNER (M.).— Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C.R. Acad. Sc., Paris, t. 272, 1971, p. 1646-1648. Zbl0213.37004MR55 #5995
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.