The micro-support of the complex defined by a convolution operator in tube domains

Ryuichi Ishimura; Yasunori Okada

Banach Center Publications (1996)

  • Volume: 33, Issue: 1, page 105-114
  • ISSN: 0137-6934

How to cite

top

Ishimura, Ryuichi, and Okada, Yasunori. "The micro-support of the complex defined by a convolution operator in tube domains." Banach Center Publications 33.1 (1996): 105-114. <http://eudml.org/doc/262806>.

@article{Ishimura1996,
author = {Ishimura, Ryuichi, Okada, Yasunori},
journal = {Banach Center Publications},
keywords = {convolution operator; hyperfunction; tube domains; micro-support},
language = {eng},
number = {1},
pages = {105-114},
title = {The micro-support of the complex defined by a convolution operator in tube domains},
url = {http://eudml.org/doc/262806},
volume = {33},
year = {1996},
}

TY - JOUR
AU - Ishimura, Ryuichi
AU - Okada, Yasunori
TI - The micro-support of the complex defined by a convolution operator in tube domains
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 105
EP - 114
LA - eng
KW - convolution operator; hyperfunction; tube domains; micro-support
UR - http://eudml.org/doc/262806
ER -

References

top
  1. [Ao] T. Aoki, Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math. 72 (1988), 261-283. Zbl0702.35253
  2. [BeGV] C. A. Berenstein, R. Gay and A. Vidras, Division theorems in the spaces of entire functions with growth conditions and their applications to PDE of infinite order, preprint. Zbl0842.32001
  3. [BeSt] C. A. Berenstein and D. C. Struppa, A remark on 'convolutors in spaces of holomorphic functions', in: Lecture Notes in Math. 1276, Springer, 1987, 276-280. 
  4. [BeSt] C. A. Berenstein and D. C. Struppa, Solutions of convolution equations in convex sets, Amer. J. Math. 109 (1987), 521-544. 
  5. [BoS] J. M. Bony et P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95-105. 
  6. [E1] O. V. Epifanov, Solvability of convolution equations in convex domains, Mat. Zametki 15 (1974), 787-796 (in Russian); English transl.: Math. Notes 15 (1974), 472-477. Zbl0314.46050
  7. [E2] O. V. Epifanov, On the surjectivity of convolution operators in complex domains, Mat. Zametki 16 (1974), 415-422. (in Russian); English transl.: Math. Notes 16 (1974), 837-841. 
  8. [E3] O. V. Epifanov, Criteria for a convolution to be epimorphic in arbitrary regions of the complex plaine, Mat. Zametki 31 (1974), 695-705 (in Russian); English transl.: Math. Notes 31 (1982), 354-359. 
  9. [F] Yu. Favorov, On the addition on the indicators of entire and subharmonic functions of several variables, Mat. Sb. 105 (147) (1978), 128-140 (in Russian). 
  10. [H1] L. Hörmander, On the range of convoluton operators, Ann. of Math. 76 (1962), 148-170. 
  11. [H2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966. 
  12. [I1] R. Ishimura, Théorèmes d'existence et d'approximation pour les équations aux dérivées partielles linéaires d'ordre infini, Publ. RIMS Kyoto Univ. 32 (1980), 393-415. Zbl0459.35015
  13. [I2] R. Ishimura, Existence locale de solutions holomorphes pour les équations différentielles d'ordre infini, Ann. Inst. Fourier (Grenoble) 35 (3) (1985), 49-57. Zbl0544.35085
  14. [I3] R. Ishimura, A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 195-199. Zbl0773.32006
  15. [IO] R. Ishimura and Y. Okada, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France 122 (1994), 413-433. Zbl0826.35144
  16. [IOk] R. Ishimura and Y. Okada, Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. 48 (1994), 257-263. 
  17. [Kan] A. Kaneko, Introduction to Hyperfunctions, Kluwer Acad. Publ., 1988. 
  18. [KS] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer, 1990. 
  19. [Kaw] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 467-517. Zbl0212.46101
  20. [Ki] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356. Zbl0189.40502
  21. [Ko1] Yu. F. Korobeĭnik, On solutions of some functional equations in classes of functions analytic in convex domains, Mat. Sb. 75 (1968), 225-234 (in Russian); English transl.: Math. USSR-Sb. 4 (1968), 203-211. 
  22. [Ko2] Yu. F. Korobeĭnik, The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity, Mat. Sb. 80 (1969), 52-76 (in Russian); English transl.: Math. USSR-Sb. 9 (1969), 53-71. 
  23. [Ko3] Yu. F. Korobeĭnik, Convolution equations in the complex domain, Mat. Sb. 127 (1699 (1985) (in Russian); English transl.: Math. USSR-Sb. 55 (1985), 171-193. 
  24. [LG] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. 282, Springer, 1986. Zbl0583.32001
  25. [L] B. Ja. Levin, Distribution of Zeros of Entire Functions, Trans. Math. Monographs 5, Amer. Math. Soc., 1964. 
  26. [M] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 271-354. Zbl0071.09002
  27. [MéSt] A. Méril and D. C. Struppa, Convolutors in spaces of holomorphic functions, in: Lecture Notes in Math. 1276, Springer, 1987, 253-275. Zbl0628.42008
  28. [Mo1] V. V. Morzhakov, Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in n , Mat. Zametki 16 (1974), 431-440 (in Russian); English transl.: Math. Notes 16 (1974), 846-851. 
  29. [Mo2] V. V. Morzhakov, On epimorphicity of a convolution operator in a convex domains in l , Mat. Sb. 132 (174) (1987), 352-370 (in Russian); Math. USSR-Sb. 60 (1988), 347-364. Zbl0632.46034
  30. [Mo3] V. V. Morzhakov, Convolution equations in convex domains of n , in: Complex Anal. and Appl. ’87, Sofia, 1989, 360-364. 
  31. [N] V. V. Napalkov, Convolution equations in multidimensional spaces, Mat. Zametki 25 (1979), 761-774 (in Russian); English transl.: Math. Notes 25 (1979). Zbl0403.45005
  32. [O] Y. Okada, Stability of convolution operators, Publ. RIMS Kyoto Univ., to appear. Zbl0808.46057
  33. [Sé] A. Sébbar, Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, in: Sém. Lelong-Skoda, Lecture Notes in Math. 822, Springer, 1980, 199-220. 
  34. [T] V. A. Tkachenko, Equations of convolution type in spaces of analytic functionals, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 378-392 (in Russian); English transl.: Math. USSR-Izv. 11 (1977), 361-374. 
  35. [V] A. Vidras, Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland, 1992. 
  36. [Z] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648. Zbl0213.37004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.