On extendability of invariant distributions

Bogdan Ziemian

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 13-25
  • ISSN: 0066-2216

Abstract

top
In this paper sufficient conditions are given in order that every distribution invariant under a Lie group extend from the set of orbits of maximal dimension to the whole of the space. It is shown that these conditions are satisfied for the n-point action of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary signature.

How to cite

top

Ziemian, Bogdan. "On extendability of invariant distributions." Annales Polonici Mathematici 74.1 (2000): 13-25. <http://eudml.org/doc/208362>.

@article{Ziemian2000,
abstract = {In this paper sufficient conditions are given in order that every distribution invariant under a Lie group extend from the set of orbits of maximal dimension to the whole of the space. It is shown that these conditions are satisfied for the n-point action of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary signature.},
author = {Ziemian, Bogdan},
journal = {Annales Polonici Mathematici},
keywords = {Hausdorff partition; foliation; invariant distribution; distributions; -dimensional Hausdorff analytic manifold; orbit space of action; connected Lie group; semianalytic sets and functions; hyperbolic sets and orbits; invariant distributions; convergence; Lorentz group; pure Lorentz group; -point Lorentz invariant distributions},
language = {eng},
number = {1},
pages = {13-25},
title = {On extendability of invariant distributions},
url = {http://eudml.org/doc/208362},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Ziemian, Bogdan
TI - On extendability of invariant distributions
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 13
EP - 25
AB - In this paper sufficient conditions are given in order that every distribution invariant under a Lie group extend from the set of orbits of maximal dimension to the whole of the space. It is shown that these conditions are satisfied for the n-point action of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary signature.
LA - eng
KW - Hausdorff partition; foliation; invariant distribution; distributions; -dimensional Hausdorff analytic manifold; orbit space of action; connected Lie group; semianalytic sets and functions; hyperbolic sets and orbits; invariant distributions; convergence; Lorentz group; pure Lorentz group; -point Lorentz invariant distributions
UR - http://eudml.org/doc/208362
ER -

References

top
  1. [1] O. V. Besov et al., Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian). 
  2. [2] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972. Zbl0246.57017
  3. [3] A. Cerezo, Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267-298. Zbl0301.35009
  4. [4] V. Edén, Disributions invariant under the group of complex orthogonal transformations, Math. Scand. 14 (1964), 75-89. 
  5. [5] C. Herz, Invariant distributions, in: Proc. Sympos. Pure Math. 35, Part 2, Amer. Math. Soc., 1979, 361-373. 
  6. [6] P. Jeanquartier, Distributions et opérateurs différentiels homogènes et inva- riants, Comment. Math. Helv. 39 (1965), 205-252. Zbl0197.40602
  7. [7] S. Łojasiewicz, Ensembles semi-analytiques, IHES, 1965. 
  8. [8] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966. 
  9. [9] P.-D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269. Zbl0055.34101
  10. [10] R. Narasimhan, Analysis on Real and Complex Manifolds, Masson, Paris, 1968. Zbl0188.25803
  11. [11] A. I. Oksak, On invariant and covariant Schwartz distributions in the case of a compact linear group, Comm. Math. Phys. 46 (1976), 269-287. Zbl0331.46028
  12. [12] G. de Rham, Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv. 28 (1954), 346-352. Zbl0056.31601
  13. [13] L. Schwartz, Séminaire 1954/55, Exposé n°7. 
  14. [14] G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68. Zbl0297.57015
  15. [15] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218. Zbl0104.33402
  16. [16] H. Weyl, The Classical Groups, Princeton Univ. Press, 1946. Zbl1024.20502
  17. [17] B. Ziemian, On G-invariant distributions, J. Differential Equations 35 (1980), 66-86. Zbl0423.58019
  18. [18] B. Ziemian, Distributions invariant under compact Lie groups, Ann. Polon. Math. 42 (1983), 175-183. Zbl0541.58007
  19. [19] Yu. M. Zinoviev, On Lorentz invariant distributions, Comm. Math. Phys. 47 (1976), 33-42. Zbl0317.46032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.