Around Widder’s characterization of the Laplace transform of an element of L ( + )

Jan Kisyński

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 161-200
  • ISSN: 0066-2216

Abstract

top
Let ϰ be a positive, continuous, submultiplicative function on + such that l i m t e - ω t t - α ϰ ( t ) = a for some ω ∈ ℝ, α ∈ + ¯ and a + . For every λ ∈ (ω,∞) let ϕ λ ( t ) = e - λ t for t + . Let L ϰ 1 ( + ) be the space of functions Lebesgue integrable on + with weight ϰ , and let E be a Banach space. Consider the map ϕ : ( ω , ) λ ϕ λ L ϰ 1 ( + ) . Theorem 5.1 of the present paper characterizes the range of the linear map T T ϕ defined on L ( L ϰ 1 ( + ) ; E ) , generalizing a result established by B. Hennig and F. Neubrander for ϰ ( t ) = e ω t . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization of the Laplace transform of a function in L ( + ) . Some applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are discussed. In particular a version of the Hille-Yosida generation theorem is deduced for C 0 semigroups ( S t ) t + ¯ such that s u p t + ¯ ( ϰ ( t ) ) - 1 S t < .

How to cite

top

Kisyński, Jan. "Around Widder’s characterization of the Laplace transform of an element of $L^{∞}(ℝ^{+})$." Annales Polonici Mathematici 74.1 (2000): 161-200. <http://eudml.org/doc/208364>.

@article{Kisyński2000,
abstract = {Let ϰ be a positive, continuous, submultiplicative function on $ℝ^\{+\}$ such that $lim_\{t→∞\} e^\{-ωt\}t^\{-α\}ϰ(t) = a$ for some ω ∈ ℝ, α ∈ $\overline\{ℝ^\{+\}\}$ and $a ∈ ℝ^\{+\}$. For every λ ∈ (ω,∞) let $ϕ_\{λ\}(t) =e^\{-λt\}$ for $t ∈ ℝ^\{+\}$. Let $L^\{1\}_\{ϰ\}(ℝ^\{+\})$ be the space of functions Lebesgue integrable on $ℝ^\{+\}$ with weight $ϰ$, and let E be a Banach space. Consider the map $ϕ_\{•\}: (ω,∞) ∋ λ → ϕ_\{λ\} ∈ L_\{ϰ\}^\{1\}(ℝ^\{+\})$. Theorem 5.1 of the present paper characterizes the range of the linear map $T → Tϕ_\{•\}$ defined on $L(L_\{ϰ\}^\{1\}(ℝ^\{+\});E)$, generalizing a result established by B. Hennig and F. Neubrander for $ϰ(t)=e^\{ωt\}$. If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization of the Laplace transform of a function in $L^\{∞\}(ℝ^\{+\})$. Some applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are discussed. In particular a version of the Hille-Yosida generation theorem is deduced for $C_0$ semigroups $(S_t)_\{t ∈ \overline\{ℝ^\{+\}\}\}$ such that $sup_\{t ∈ \overline\{ℝ^\{+\}\}\} (ϰ(t))^\{-1\}∥ S_t∥ < ∞$.},
author = {Kisyński, Jan},
journal = {Annales Polonici Mathematici},
keywords = {operators from $L_\{ϰ\}^\{1\}(ℝ^\{+\})$ into a Banach space; complete monotonicity and positivity with respect to a cone; one-parameter semigroups of operators; vector measures; Gelfand space; Radon-Nikodym property; representations of the convolution algebra $L_\{ϰ\}^\{1\}(ℝ^\{+\})$; pseudoresolvents and their generators; real inversion formulas for the Laplace transform; characterization of Laplace-transforms; Banach space; real inversion formulas; semigroups of operators; complete monotonicity},
language = {eng},
number = {1},
pages = {161-200},
title = {Around Widder’s characterization of the Laplace transform of an element of $L^\{∞\}(ℝ^\{+\})$},
url = {http://eudml.org/doc/208364},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Kisyński, Jan
TI - Around Widder’s characterization of the Laplace transform of an element of $L^{∞}(ℝ^{+})$
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 161
EP - 200
AB - Let ϰ be a positive, continuous, submultiplicative function on $ℝ^{+}$ such that $lim_{t→∞} e^{-ωt}t^{-α}ϰ(t) = a$ for some ω ∈ ℝ, α ∈ $\overline{ℝ^{+}}$ and $a ∈ ℝ^{+}$. For every λ ∈ (ω,∞) let $ϕ_{λ}(t) =e^{-λt}$ for $t ∈ ℝ^{+}$. Let $L^{1}_{ϰ}(ℝ^{+})$ be the space of functions Lebesgue integrable on $ℝ^{+}$ with weight $ϰ$, and let E be a Banach space. Consider the map $ϕ_{•}: (ω,∞) ∋ λ → ϕ_{λ} ∈ L_{ϰ}^{1}(ℝ^{+})$. Theorem 5.1 of the present paper characterizes the range of the linear map $T → Tϕ_{•}$ defined on $L(L_{ϰ}^{1}(ℝ^{+});E)$, generalizing a result established by B. Hennig and F. Neubrander for $ϰ(t)=e^{ωt}$. If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization of the Laplace transform of a function in $L^{∞}(ℝ^{+})$. Some applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are discussed. In particular a version of the Hille-Yosida generation theorem is deduced for $C_0$ semigroups $(S_t)_{t ∈ \overline{ℝ^{+}}}$ such that $sup_{t ∈ \overline{ℝ^{+}}} (ϰ(t))^{-1}∥ S_t∥ < ∞$.
LA - eng
KW - operators from $L_{ϰ}^{1}(ℝ^{+})$ into a Banach space; complete monotonicity and positivity with respect to a cone; one-parameter semigroups of operators; vector measures; Gelfand space; Radon-Nikodym property; representations of the convolution algebra $L_{ϰ}^{1}(ℝ^{+})$; pseudoresolvents and their generators; real inversion formulas for the Laplace transform; characterization of Laplace-transforms; Banach space; real inversion formulas; semigroups of operators; complete monotonicity
UR - http://eudml.org/doc/208364
ER -

References

top
  1. [A] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. Zbl0637.44001
  2. [B] A. Bobrowski, On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math. 124 (1997), 281-290. Zbl0876.44001
  3. [C] W. Chojnacki, Multiplier algebras, Banach bundles, and one-parameter semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 287-322. Zbl0970.46032
  4. [D] E. B. Davies, One-Parameter Semigroups, Academic Press, 1980. Zbl0457.47030
  5. [D-M;C] C. Dellacherie and P.-A. Meyer, Probabilities and Potential C. Potential Theory for Discrete and Continuous Semigroups, North-Holland Math. Stud. 151, North-Holland, 1988. 
  6. [D-M;XII-XVI] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel, Chapitres XII à XVI. Théorie du Potentiel Associée à une Résolvante, Théorie des Processus de Markov, Hermann, Paris, 1987. 
  7. [D-S;I] N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, Interscience, New York, 1958. 
  8. [D-S;II] N. Dunford and J. T. Schwartz, Linear Operators, Part II. Spectral Theory, Self Adjoint Operators in Hilbert Space, Interscience, New York, 1963. Zbl0128.34803
  9. [D-U] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977. 
  10. [E-K] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, 1986. 
  11. [F-Y] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, 1999. 
  12. [G] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, 1985. Zbl0592.47034
  13. [H] P. R. Halmos, Measure Theory, Springer, 1974 
  14. [H-N] B. Hennig and F. Neubrander, On representations, inversions, and approximations of Laplace transforms in Banach spaces, Appl. Anal. 49 (1993), 151-170. Zbl0791.44002
  15. [H-R;I] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume I, Structure of Topological Groups, Integration Theory, Group Representations, 2nd ed., Springer, 1979. 
  16. [H-R;II] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume II, Structure and Analysis on Compact Groups, Analysis on Locally Compact Abelian Groups, 3rd printing, Springer, 1997. 
  17. [H] E. Hille, Functional Analysis and Semi-groups, Colloq. Publ., Amer. Math. Soc., 1948. Zbl0033.06501
  18. [H-P] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Colloq. Publ., Amer. Math. Soc., 1957. 
  19. [Hi] F. Hirsch, Familles résolvantes, générateurs, cogénérateurs, potentiels, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 89-210. Zbl0219.31015
  20. [J] B. E. Johnson, Centralisers on certain topological algebras, J. London Math. Soc. 39 (1964), 603-614. Zbl0124.06902
  21. [J-K-B] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. I, 2nd ed., Wiley, 1994. 
  22. [K;I] T. Kato, Remarks on pseudo-resolvents and infinitesimal generators of semi-groups, Proc. Japan Acad. 35 (1959), 467-468. Zbl0095.10502
  23. [K;II] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. 
  24. [Ki] J. Kisyński, The Widder spaces, representations of the convolution algebra L 1 ( + ) , and one parameter semigroups of operators, preprint, Inst. Math., Polish Acad. Sci., 1998, 36 pp. 
  25. [Kr] S. G. Krein, Linear Differential Equations in Banach Space, Transl. Math. Monographs 29, Amer. Math. Soc., Providence, RI, 1971. 
  26. [deL-H-W-W] R. deLaubenfels, Z. Huang, S. Wang and Y. Wang, Laplace transforms of polynomially bounded vector-valued functions and semigroups of operators, Israel J. Math. 98 (1997), 189-207. Zbl0896.47034
  27. [deL-J] R. deLaubenfels and M. Jazar, Functional calculi, regularized semigroups and integrated semigroups, Studia Math. 132 (1999), 151-172. Zbl0923.47011
  28. [L] J. L. Lions, Les semigroupes distributions, Portugal. Math. 19 (1960), 141-164. Zbl0103.09001
  29. [Pal] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras. Volume I: Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, 1994. 
  30. [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 2nd printing, Springer, 1983. Zbl0516.47023
  31. [Ph] R. S. Phillips, An inversion formula for Laplace transforms and semigroups of linear operators, Ann. of Math. 59 (1954), 325-356. Zbl0059.10704
  32. [R-Y] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991. Zbl0731.60002
  33. [R;I] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw- Hill, 1976. Zbl0346.26002
  34. [R;II] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, 1974. 
  35. [S-K] I. E. Segal and R. A. Kunze, Integrals and Operators, 2nd ed., Springer, 1987. 
  36. [T] H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887-919. Zbl0099.10302
  37. [W;I] D. V. Widder, The Laplace Transform, Princeton Univ. Press, 1946. Zbl0060.24801
  38. [W;II] D. V. Widder, An Introduction to Transform Theory, Academic Press, 1971. Zbl0219.44001
  39. [Y;I] K. Yosida, On the differentiability and the representation of one-parameter semi-groups of linear operators, J. Math. Soc. Japan 1 (1948), 15-21. Zbl0037.35302
  40. [Y;II] K. Yosida, Functional Analysis, 6th ed., Springer, 1980; reprint of the 1980 edition, Springer, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.