Multiplier algebras, Banach bundles, and one-parameter semigroups

Wojciech Chojnacki

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)

  • Volume: 28, Issue: 2, page 287-322
  • ISSN: 0391-173X

How to cite

top

Chojnacki, Wojciech. "Multiplier algebras, Banach bundles, and one-parameter semigroups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.2 (1999): 287-322. <http://eudml.org/doc/84378>.

@article{Chojnacki1999,
author = {Chojnacki, Wojciech},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Banach bundles; structure of multiplier algebras; Kisyński’s generalization for pseudoresolvents; Hille-Yosida theorem; Trotter-Kato approximation theorem; semigroups of linear bounded operators},
language = {eng},
number = {2},
pages = {287-322},
publisher = {Scuola normale superiore},
title = {Multiplier algebras, Banach bundles, and one-parameter semigroups},
url = {http://eudml.org/doc/84378},
volume = {28},
year = {1999},
}

TY - JOUR
AU - Chojnacki, Wojciech
TI - Multiplier algebras, Banach bundles, and one-parameter semigroups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 2
SP - 287
EP - 322
LA - eng
KW - Banach bundles; structure of multiplier algebras; Kisyński’s generalization for pseudoresolvents; Hille-Yosida theorem; Trotter-Kato approximation theorem; semigroups of linear bounded operators
UR - http://eudml.org/doc/84378
ER -

References

top
  1. [1] M. Altman, Factorisation dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A272 (1971), 1388-1389. Zbl0232.46045MR284814
  2. [2] M. Altman, A generalization and the converse of Cohen's factorization theorem, Duke Math. J.42 (1975), 105-110. Zbl0347.46049MR394207
  3. [3] A. Bobrowski, On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math.124 (1997), 281-290. Zbl0876.44001MR1456426
  4. [4] F.F. Bonsall - J. Duncan, "Complete Normed Algebras", Springer-Verlag, Berlin, New York, 1973. Zbl0271.46039MR423029
  5. [5] W. Chojnacki, On the equivalence of a theorem of Kisyński and the Hille-Yosida generation theorem, Proc. Amer. Math. Soc.126 (1998), 491-497. Zbl0893.46044MR1415577
  6. [6] W. Chojnacki - J. Kisy, On the Favard classes of semigroups associated with pseudo-resolvents, Acta Sci. Math. (Szeged) 64 (1998), 681-696. Zbl0937.47044MR1666075
  7. [7] P.J. Cohen, Factorization in group algebras, Duke Math. J.26 (1959), 199-205. Zbl0085.10201MR104982
  8. [8] P.C. Curtis, JR. - A. Figá-Talamanca, Factorization theorems for Banach algebras, In: "Function Algebras" (Frank T. Birtel, ed.), Scott, Foresman and Co., Chicago, Ill., 1966, pp. 169-185. Zbl0191.13802MR203500
  9. [9] C. Dellacherie - P.A. Meyer, "Probabilities and potential C", North-Holland, Amsterdam, New York, 1988. Zbl0716.60001MR939365
  10. [10] M Despić - F. Ghahramani - S. Grabiner, Weighted convolution algebras without bounded approximate identities, Math. Scand.76 (1995), 257-272. Zbl0849.46035MR1354583
  11. [11] R.S. Doran - J. Wichmann, "Approximate identities and factorization in Banach modules", Lecture Notes in Math., vol. 768, Springer-Verlag, Berlin, Heidelberg, New York, 1979. Zbl0418.46039MR555240
  12. [12] A. Douady - L. Dal Soglio-Hérault, Existence de sections pour un fibré de Banach au sens de Fell, unpublished manuscript (see also Appendix in [15] and Appendix D in [16]). 
  13. [13] M.J. Dupré - R.M. Gillette, "Banach bundles, Banach modules and automorphisms of C*-algebras", Pitman, Boston, London, Melbourne, 1983. Zbl0536.46048MR721812
  14. [14] J.M.G. Fell, The structure of algebras of operator fields, Acta Math.106 (1961), 233-280. Zbl0101.09301MR164248
  15. [15] J.M.G. Fell, "Induced representations and Banach *-algebraic bundles", Lecture Notes in Math., vol. 582, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0372.22001MR457620
  16. [16] J.M.G. Fell - R. S. DORAN" "Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles", Academic Press, Boston, 1988. Zbl0652.46050
  17. [17] F. Ghahramani, Homomorphisms and derivations on weighted convolution algebras, J. London Math. Soc. (2) 21 (1980), 149-161. Zbl0435.43005MR576191
  18. [18] S. Grabiner, Homomorphisms and semigroups in weighted convolution algebras, Indiana Univ. Math. J.37 (1988), 589-615. Zbl0676.46037MR962925
  19. [19] S.L. Gulick - T.S. Liu - A.C.M. Van Rooij, Group algebra modules. II, Canad. J. Math.19 (1967), 151-173. Zbl0148.12004MR222663
  20. [20] E. Hewitt, The ranges of certain convolution operators, Math. Scand.15 (1964), 147-155. Zbl0135.36002MR187016
  21. [21] K.H. Hofmann, Representations of algebras by continuous sections, Bull. Amer. Math. Soc. (N.S.) 78 (1972), 291-373. Zbl0237.16018MR347915
  22. [22] K.H. Hofmann, "Banach bundles", Darmstadt Notes, 1974. 
  23. [23] K.H. Hofmann, Bundles and sheaves are equivalent in the category of Banach spaces, In: "K-theory and operator algebras: proceedings of a conference held at the University of Georgia in Athens, Georgia, April 21-25, 1975" (B. B. Morrel and I. M. Singer, eds.), Lecture Notes in Math., vol. 575, Springer-Verlag, Berlin, Heidelberg, New York, 1977, pp. 53-69. Zbl0346.46053MR487491
  24. [24] B.E. Johnson, Centralisers on certain topological algebras, J. London Math. Soc.39 (1964), 603-614. Zbl0124.06902MR167849
  25. [25] B.E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. Zbl0143.36102MR159233
  26. [26] J Kisyński, personal communication. 
  27. [27] J Kisyński, The Widder spaces, representations of the convolution algebra L1 (R+), and one parameter semigroups of operators, Preprint no. 588, Institute of Mathematics, Polish Academy of Sciences, Warsaw, June 1998. 
  28. [28] P. Koosis, Sur un théorème de Paul Cohen, C. R. Acad. Sci. Paris259 (1964), 1380-1382. Zbl0175.14202MR172069
  29. [29] T.G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Funct. Anal.3 (1969), 354-375. Zbl0174.18401MR242016
  30. [30] T.G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc.148 (1970), 23-32. Zbl0194.44103MR256210
  31. [31] T.W. Palmer, "Banach Algebras and The General Theory of *-Algebras, Volume I: Algebras and Banach Algebras", Encyclopedia of Mathematics and Its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Zbl0809.46052
  32. [32] F.A. Potra - V. Pták, "Nondiscrete induction and iterative processes", Research Notes in Math., vol. 103, Pitman (Advance Publishing Program), Boston, Mass., 1984. Zbl0549.41001MR754338
  33. [33] V. Pták, Un théorème de factorisation, C. R. Acad. Sci. Paris Sér. A275 (1972), 1297-1299. Zbl0252.46044MR312269
  34. [34] V. Pták, Deux théorèmes de factorisation, C. R. Acad. Sci. Paris Sér. A278 (1974), 1091-1094. Zbl0277.46047MR341096
  35. [35] V. Pták, Factorization in Banach algebras, Studia Math.65 (1979), 279-285. Zbl0342.46036MR567080
  36. [36] D. Ray, Resolvents, transition functions, and strongly Markovian processes, Ann. of Math. (2) 70 (1959), 43-72. Zbl0092.34501MR107302
  37. [37] I.E. Segal - R.A. Kunze, "Integrals and operators", 2 ed., Springer-Verlag, Berlin, 1978. Zbl0373.28001MR486380
  38. [38] A.M. Sinclair, Bounded approximate identities, factorization, and a convolution algebra, J. Funct. Anal.29 (1978), 308-318. Zbl0385.46030MR512247
  39. [39] A.M. Sinclair, Cohen elements in Banach algebras, Proc. Roy. Soc. Edinburgh Sec.A84 (1979), 55-70. Zbl0425.46038MR549871
  40. [40] A.M. Sinclair, Cohen's factorization method using an algebra of analytic functions, Proc. London Math. Soc. (3) 39 (1979), 451-468. Zbl0425.46036MR550079
  41. [41] A.M. Sinclair, "Continuous semigroups in Banach algebras", Cambridge University Press, Cambridge, New York, 1982. Zbl0493.46042MR664431
  42. [42] H.F. Trotter, Approximation of semigroups of operators, Pacific J. Math.8 (1958), 887-919. Zbl0099.10302MR103420
  43. [43] J.G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math.2 (1952), 251-261. Zbl0049.35702MR49911
  44. [44] G.A. Willis, The continuity of derivations and module homomorphisms, J. Austral. Math. Soc. Ser. A40 (1986), 299-320. Zbl0626.43004MR832972

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.