Singular holomorphic functions for which all fibre-integrals are smooth

D. Barlet; H. Maire

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 65-77
  • ISSN: 0066-2216

Abstract

top
For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals     s f = s ϱ ω ' ω ' ' ¯ , ϱ C c ( X ) , ω ' , ω ' ' Ω X n , are C on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are C . We study such maps and build a family of examples where also fibre-integrals for ω ' , ω ' ' X , the Grothendieck sheaf, are C .

How to cite

top

Barlet, D., and Maire, H.. "Singular holomorphic functions for which all fibre-integrals are smooth." Annales Polonici Mathematici 74.1 (2000): 65-77. <http://eudml.org/doc/208377>.

@article{Barlet2000,
abstract = {For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals     $s ↦ ∫_\{f=s\} ϱ ω^\{\prime \} ⋀ \bar\{ω^\{\prime \prime \}\}, ϱ ∈ C^\{∞\}_\{c\}(X), ω^\{\prime \}, ω^\{\prime \prime \} ∈ Ω_\{X\}^\{n\}$, are $C^\{∞\}$ on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are $C^\{∞\}$. We study such maps and build a family of examples where also fibre-integrals for $ω^\{\prime \},ω^\{\prime \prime \} ∈ ⍹_\{X\}$, the Grothendieck sheaf, are $C^\{∞\}$.},
author = {Barlet, D., Maire, H.},
journal = {Annales Polonici Mathematici},
keywords = {singularities; fibre-integrals; Mellin transform; currents},
language = {eng},
number = {1},
pages = {65-77},
title = {Singular holomorphic functions for which all fibre-integrals are smooth},
url = {http://eudml.org/doc/208377},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Barlet, D.
AU - Maire, H.
TI - Singular holomorphic functions for which all fibre-integrals are smooth
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 65
EP - 77
AB - For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals     $s ↦ ∫_{f=s} ϱ ω^{\prime } ⋀ \bar{ω^{\prime \prime }}, ϱ ∈ C^{∞}_{c}(X), ω^{\prime }, ω^{\prime \prime } ∈ Ω_{X}^{n}$, are $C^{∞}$ on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are $C^{∞}$. We study such maps and build a family of examples where also fibre-integrals for $ω^{\prime },ω^{\prime \prime } ∈ ⍹_{X}$, the Grothendieck sheaf, are $C^{∞}$.
LA - eng
KW - singularities; fibre-integrals; Mellin transform; currents
UR - http://eudml.org/doc/208377
ER -

References

top
  1. [A-G-Z-V] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps II, Birkhäuser, 1988. 
  2. [B 78] D. Barlet, Le faisceau ω X sur un espace analytique X de dimension pure, in: Lecture Notes in Math. 670, Springer, 1978, 187-204. 
  3. [B 84] D. Barlet, Contribution effective de la monodromie aux développements asymptotiques, Ann. Sci. Ecole Norm. Sup. 17 (1984), 293-315. Zbl0542.32003
  4. [B 85] D. Barlet, Forme hermitienne canonique sur la cohomologie de la fibre de Milnor d'une hypersurface à singularité isolée, Invent. Math. 81 (1985), 115-153. Zbl0574.32011
  5. [B-M 89] D. Barlet and H.-M. Maire, Asymptotic expansion of complex integrals via Mellin transform, J. Funct. Anal. 83 (1989), 233-257. Zbl0707.32003
  6. [B-M 99] D. Barlet and H.-M. Maire, Poles of the current | f | 2 λ over an isolated singularity, Internat. J. Math. (2000) (to appear). 
  7. [L] F. Loeser, Quelques conséquences locales de la théorie de Hodge, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 75-92. Zbl0862.32020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.