How to get rid of one of the weights in a two-weight Poincaré inequality?

Bruno Franchi; Piotr Hajłasz

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 97-103
  • ISSN: 0066-2216

Abstract

top
We prove that if a Poincaré inequality with two different weights holds on every ball, then a Poincaré inequality with the same weight on both sides holds as well.

How to cite

top

Franchi, Bruno, and Hajłasz, Piotr. "How to get rid of one of the weights in a two-weight Poincaré inequality?." Annales Polonici Mathematici 74.1 (2000): 97-103. <http://eudml.org/doc/208379>.

@article{Franchi2000,
abstract = {We prove that if a Poincaré inequality with two different weights holds on every ball, then a Poincaré inequality with the same weight on both sides holds as well.},
author = {Franchi, Bruno, Hajłasz, Piotr},
journal = {Annales Polonici Mathematici},
keywords = {weights; doubling measures; metric spaces; Poincaré inequality; weighted Poincaré inequality; doubling measure},
language = {eng},
number = {1},
pages = {97-103},
title = {How to get rid of one of the weights in a two-weight Poincaré inequality?},
url = {http://eudml.org/doc/208379},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Franchi, Bruno
AU - Hajłasz, Piotr
TI - How to get rid of one of the weights in a two-weight Poincaré inequality?
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 97
EP - 103
AB - We prove that if a Poincaré inequality with two different weights holds on every ball, then a Poincaré inequality with the same weight on both sides holds as well.
LA - eng
KW - weights; doubling measures; metric spaces; Poincaré inequality; weighted Poincaré inequality; doubling measure
UR - http://eudml.org/doc/208379
ER -

References

top
  1. [1] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033-1074. 
  2. [2] M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324. Zbl0833.46020
  3. [3] B. Bojarski, Remarks on Sobolev imbedding inequalities, in: Complex Analysis (Joensuu, 1987), Lecture Notes in Math. 1351, Springer 1988, 52-68. 
  4. [4] J. Boman, L p -estimates for very strongly elliptic systems, report no 29, Dept. of Math., Univ. of Stockholm, 1982. 
  5. [5] S. M. Buckley, P. Koskela and G. Lu, Boman equals John, in: XVI Rolf Nevanlinna Colloquium (Joensuu,1995), de Gruyter, Berlin, 1996, 91-99. 
  6. [6] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. Zbl0893.35023
  7. [7] S. K. Chua, Weighted Sobolev inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117 (1993), 449-457. Zbl0812.46020
  8. [8] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise inequalities for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158. Zbl0751.46023
  9. [9] B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. Zbl0822.46032
  10. [10] B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903-1924. Zbl0938.46037
  11. [11] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. Zbl0552.35032
  12. [12] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026
  13. [13] B. Franchi, G. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Mat. Res. Notices 1996, no. 1, 1-14. Zbl0856.43006
  14. [14] B. Franchi, C. Pérez and R. L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108-146. Zbl0892.43005
  15. [15] B. Franchi, C. Pérez and R. L. Wheeden, in preparation. 
  16. [16] B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequalities Appl. 3 (1999), 65-89 Zbl0934.46037
  17. [17] B. Franchi and R. L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, Colloq. Math. 74 (1997), 1-27. Zbl0915.46028
  18. [18] J. García Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Math. Stud. 116, North-Holland, 1985. 
  19. [19] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. Zbl0880.35032
  20. [20] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. Zbl0859.46022
  21. [21] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215. Zbl0837.46024
  22. [22] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000). Zbl0954.46022
  23. [23] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. Zbl0614.35066
  24. [24] R. V. Kohn, New integral estimates for the deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78 (1982), 131-172. Zbl0491.73023
  25. [25] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342. Zbl1131.46304
  26. [26] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439. Zbl0804.35015
  27. [27] G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466. Zbl0860.35006
  28. [28] P. Maheux et L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-740. 
  29. [29] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Mat. Res. Notices 1992, no. 2, 27-38. Zbl0769.58054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.