Symmetric polynomials and divided differences in formulas of intersection theory

Piotr Pragacz

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 125-177
  • ISSN: 0137-6934

Abstract

top
The goal of this paper is at least two-fold. First we attempt to give a survey of some recent (and developed up to the time of the Banach Center workshop Parameter Spaces, February '94) applications of the theory of symmetric polynomials and divided differences to intersection theory. Secondly, taking this opportunity, we complement the story by either presenting some new proofs of older results (and this takes place usually in the Appendices to the present paper) or providing some new results which arose as by-products of the author's work in this domain during last years.

How to cite

top

Pragacz, Piotr. "Symmetric polynomials and divided differences in formulas of intersection theory." Banach Center Publications 36.1 (1996): 125-177. <http://eudml.org/doc/208576>.

@article{Pragacz1996,
abstract = {The goal of this paper is at least two-fold. First we attempt to give a survey of some recent (and developed up to the time of the Banach Center workshop Parameter Spaces, February '94) applications of the theory of symmetric polynomials and divided differences to intersection theory. Secondly, taking this opportunity, we complement the story by either presenting some new proofs of older results (and this takes place usually in the Appendices to the present paper) or providing some new results which arose as by-products of the author's work in this domain during last years.},
author = {Pragacz, Piotr},
journal = {Banach Center Publications},
keywords = {symmetric polynomials; divided differences; intersection theory; symmetric functions; polynomials universally supported on degeneracy loci; flag degeneracy loci; flag varieties; Grassmannians; Schubert varieties; Schur polynomials; -polynomials; determinants; Pfaffians; Weyl groups; Young-Ferrers' diagrams; Segre classes; tensor bundles; Gysin maps; vector bundles; Schur bundles; vanishing theorem},
language = {eng},
number = {1},
pages = {125-177},
title = {Symmetric polynomials and divided differences in formulas of intersection theory},
url = {http://eudml.org/doc/208576},
volume = {36},
year = {1996},
}

TY - JOUR
AU - Pragacz, Piotr
TI - Symmetric polynomials and divided differences in formulas of intersection theory
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 125
EP - 177
AB - The goal of this paper is at least two-fold. First we attempt to give a survey of some recent (and developed up to the time of the Banach Center workshop Parameter Spaces, February '94) applications of the theory of symmetric polynomials and divided differences to intersection theory. Secondly, taking this opportunity, we complement the story by either presenting some new proofs of older results (and this takes place usually in the Appendices to the present paper) or providing some new results which arose as by-products of the author's work in this domain during last years.
LA - eng
KW - symmetric polynomials; divided differences; intersection theory; symmetric functions; polynomials universally supported on degeneracy loci; flag degeneracy loci; flag varieties; Grassmannians; Schubert varieties; Schur polynomials; -polynomials; determinants; Pfaffians; Weyl groups; Young-Ferrers' diagrams; Segre classes; tensor bundles; Gysin maps; vector bundles; Schur bundles; vanishing theorem
UR - http://eudml.org/doc/208576
ER -

References

top
  1. [A-C] E. Akyildiz, J. B. Carrell, An algebraic formula for the Gysin homomorphism from G/B to G/P, Illinois J. Math. 31 (1987), 312-320. Zbl0629.57030
  2. [A-L-P] E. Akyildiz, A. Lascoux, P. Pragacz, Cohomology of Schubert subvarieties of G L n / P , J. Differential Geom. 35 (1992), 511-519. 
  3. [B-G-G] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, Schubert cells and cohomology of the spaces G/P, Russian Math. Surv. 28 (1973), 1-26. 
  4. [Bou] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Herrmann, Paris, 1968. 
  5. [B] W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen, Rev. Roumaine Math. Pures Appl. 20 (1975) 1109-1111. Zbl0347.13008
  6. [Ch] C. Chevalley, Sur les Décompositions Cellulaires des Espaces G/B, Proc. Sympos. Pure Math. 56(1) (1994), 1-23. 
  7. [DC-P] C. De Concini, P. Pragacz, On the class of Brill-Noether loci for Prym varieties, Math. Ann. 302 (1995), 687-697. Zbl0829.14021
  8. [D-P-S] J. P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345. Zbl0827.14027
  9. [D1] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. Zbl0269.22010
  10. [D2] M. Demazure, Désingularisation des variétés de Schubert géneralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88. Zbl0312.14009
  11. [F1] W. Fulton, Intersection Theory, Springer-Verlag, 1984. 
  12. [F2] W. Fulton, Flags, Schubert polynomials, degeneracy loci and determinantal formulas, Duke Math. J. 65 (1992), 381-420. Zbl0788.14044
  13. [F-L] W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. of Math. (2) 118 (1983), 35-60. Zbl0537.14009
  14. [G-V] I. Gessel, G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985), 300-321. Zbl0579.05004
  15. [G1] G. Z. Giambelli, Risoluzione del problema degli spazi secanti, Mem. Accad. Sci. Torino (2) 52 (1903), 171-211. Zbl34.0615.02
  16. [G2] G. Z. Giambelli, Il problema della correlazione negli iperspazi, Mem. Reale Istituto Lombardo 19 (1903), 155-194. 
  17. [G3] G. Z. Giambelli, Ordine della varietà rappresentata coll'annullare tutti i minori di dato ordine estratti da una data matrice di forme, Acc. Nazion. dei Lincei, Roma, Classe di Science Fis., Mat. e Nat., Rendiconti 12 (1903), 294-297. Zbl34.0616.01
  18. [G4] G. Z. Giambelli, Ordine di una varieta piu ampia di quella rappresentata coll'annulare tutti i minori di dato ordine, Memorie Reale Istituto Lombardo 20 (1904), 101-135. 
  19. [G5] G. Z. Giambelli, Risoluzione del problema generale numerativo per gli spazi plurisecanti di una curva algebrica, Mem. Accad. Sci. Torino (2) 59 (1909), 433-508. Zbl40.0612.04
  20. [H-T1] J. Harris, L. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71-84. Zbl0534.55010
  21. [H-T2] J. Harris, L. Tu, Chern numbers of kernel and cokernel bundles, Invent. Math. 75 (1984), 467-475. Zbl0542.14015
  22. [Ha] R. Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63-94. Zbl0173.49003
  23. [He-T] J. Herzog, Ngô Viêt Trung, Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math. 96 (1992), 1-37. 
  24. [H-B] H. Hiller, B. Boe, Pieri formula for S O 2 n + 1 / U n and S p n / U n , Adv. Math. 62 (1986), 49-67. 
  25. [H] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren der Math. Wissenschaften, Springer-Verlag, 1966; also Collected Papers, vol. I, Springer-Verlag, 1987, 151-334. 
  26. [H-H] P. N. Hoffman, J. F. Humphreys, Projective representations of symmetric groups, Oxford University Press, 1992. ßk Zbl0777.20005
  27. [J-L] C. G. Jacobi, A. Lascoux, De quibusdam rationibus universalibus ad determinantia functionalia expedienda, an unpublished manuscript. ßk 
  28. [J-L-P] T. Józefiak, A. Lascoux, P. Pragacz, Classes of determinantal varieties associated with symmetric and antisymmetric matrices (in Russian), Izv. Akad. Nauk SSSR 45 (1981), 662-673. Zbl0471.14028
  29. [K-L] G. Kempf, D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162. Zbl0295.14023
  30. [La] D. Laksov, Remarks on Giovanni Zeno Giambelli's work and life, Rend. Circ. Mat. Palermo (2) Suppl. 36 (1994), 207-218. Zbl0926.01007
  31. [L-L-P-T] D. Laksov, A. Lascoux, P. Pragacz, A. Thorup, a book in preparation. 
  32. [La-La-T] D. Laksov, A. Lascoux, A. Thorup, On Giambelli's theorem for complete correlations, Acta Math. 162 (1989), 143-199. Zbl0695.14023
  33. [L1] A. Lascoux, Puissances extérieures, déterminants et cycles de Schubert, Bull. Soc. Math. France 102 (1974), 161-179. Zbl0295.14024
  34. [L2] A. Lascoux, Classes de Chern d'un produit tensoriel, C. R. Acad. Sci. Paris Sér. I Math. 286 (1978), 385-387. Zbl0379.55011
  35. [L3] A. Lascoux, La résultante de deux polynômes, in: Séminaire d'Algèbre Dubreil-Malliavin 1985 (M.-P. Malliavin, ed.), Lecture Notes in Math. 1220,Springer, 1986, 56-72. 
  36. [L4] A. Lascoux, Interpolation de Lagrange, in: Second International Symposium (Segovia 1986) 'On Orthogonal Polynomials and their Applications', Monograf. Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza 1 (1988), 95-101. 
  37. [L5] A. Lascoux, Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris 25 (1982), 393-398. Zbl0495.14032
  38. [L6] A. Lascoux, Polynômes de Schubert; une approche historique, Discrete Math. 139 (1995), 303-317. 
  39. [La-Le-T1] A. Lascoux, B. Leclerc, J.-Y. Thibon, Une nouvelle expression de functions P de Schur, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 221-224. 
  40. [La-Le-T2] A. Lascoux, B. Leclerc, J.-Y. Thibon, Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l'unité, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1-6. Zbl0769.05095
  41. [L-P] A. Lascoux, P. Pragacz, Divided differences and ideals generated by symmetric polynomials, Discrete Math. 126 (1994), 209-215. Zbl0789.05094
  42. [L-S1] A. Lascoux, M.-P. Schützenberger, Formulairé raisonné des functions symétriques, Prepublication L.I.T.P., Université Paris 7, 1985. 
  43. [L-S2] A. Lascoux, M.-P. Schützenberger, Symmetry and flag manifolds, in: Invariant Theory (F. Gherardelli, ed.), Lecture Notes in Math. 996, Springer, 1983, 118-144. 
  44. [L-S3] A. Lascoux, M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447-450. 
  45. [L-S4] A. Lascoux, M.-P. Schützenberger, Symmetrizing operators on polynomial rings, Functional Anal. Appl. 21 (1987), 77-78. 
  46. [L-S5] A. Lascoux, M.-P. Schützenberger, Décompositions dans l'algèbre des differences divisées, Discrete Math. 99 (1992), 165-179. 
  47. [L-S6] A. Lascoux, M.-P. Schützenberger, Schubert and Grothendieck polynomials, Notes of the talk given by the first author at Moscow University (November 1987), Preprint L.I.T.P., 1988. 
  48. [M1] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1979. 
  49. [M2] I. G. Macdonald, Notes on Schubert polynomials, Publ. LACIM 6, UQUAM, Montréal, 1991. 
  50. [Ma] L. Manivel, Un théoreme d'annulation 'à la Kawamata-Viehweg', Manuscripta Math. 83 (1994), 387-404. Zbl0820.14012
  51. [Na] V. Navarro Aznar, On the Chern classes and the Euler characteristic for nonsingular complete intersections, Proc. Amer. Math. Soc. 78 (1980), 143-148. Zbl0473.14020
  52. [N] I. Newton, Philosophiæ Naturalis Principia Mathematica, London, 1687. 
  53. [Ni] H. A. Nielsen, Tensor Functors of Complexes, Aarhus Univ. Preprint 15, 1977/78. 
  54. [P-P1] A. Parusiński, P. Pragacz, Characteristic numbers of degeneracy loci, in: Enumerative Algebraic Geometry (Copenhagen, 1989), (S. Kleiman, A. Thorup, eds.) Contemp. Math. 123 (1991), 189-197. Zbl0756.32019
  55. [P-P2] A. Parusiński, P. Pragacz, Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995), 793-817. Zbl0857.14003
  56. [Po] I. R. Porteous, Simple singularities of maps, in: Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math. 192, Springer, 1971, 286-307. 
  57. [P1] P. Pragacz, Determinantal varieties and symmetric polynomials, Functional Anal. Appl. 21 (1987), 249-250. Zbl0633.14029
  58. [P2] P. Pragacz, A note on elimination theory, Indag. Math. (N.S.) 49 (1987), 215-221. Zbl0632.12002
  59. [P3] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), 413-454. Zbl0687.14043
  60. [P4] P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in: Topics in Invariant Theory -- Séminaire d'Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin, ed.), Lecture Notes in Math. 1478, Springer, 1991, 130-191. 
  61. [P5] P. Pragacz, Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, Topics in Algebra, Banach Center Publ. 26(2), 1990, 189-199. Zbl0743.14009
  62. [P-R1] P. Pragacz, J. Ratajski, Polynomials homologically supported on degeneracy loci, Preprint of the University of Bergen No. 61, 1991; to appear in: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). Zbl0876.14014
  63. [P-R2] P. Pragacz, J. Ratajski, Pieri type formula for isotropic Grassmannians; the operator approach, Manuscripta Math. 79 (1993), 127-151. Zbl0789.14041
  64. [P-R3] P. Pragacz, J. Ratajski, A Pieri-type formula for Sp(2m)/P and SO(2m+1)/P, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1035-1040. Zbl0812.14034
  65. [P-R4] P. Pragacz, J. Ratajski, A Pieri-type theorem for Lagrangian and odd Orthogonal Grassmannians, Preprint of the Max-Planck Institut für Mathematik 94-15, 1994; to appear in J. Reine Angew. Math. Zbl0847.14029
  66. [P-R5] P. Pragacz, J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; the Q ˜ -polynomials approach, Preprint of the Max-Planck Institut für Mathematik, 1994, alg-geom/9602019; to appear in Compositio Math. 
  67. [P-T] P. Pragacz, A. Thorup, On a Jacobi-Trudi formula for supersymmetric polynomials, Adv. Math. 95 (1992), 8-17. Zbl0774.05101
  68. [R] J. Ratajski, Thesis, Math. Inst. Polish Acad. Sci., Warsaw, 1995. 
  69. [Se] S. Sertöz, A triple intersection theorem for the varieties S O ( n ) / P d , Fund. Math. 142 (1993), 201-220. Zbl0837.14040
  70. [S] H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in n Dimensionen, Math. Ann. 45 (1894), 153-206. Zbl25.1038.03
  71. [T] R. Thom, Les ensembles singuliers d'une application différentiable et leurs propriétés homologiques, in: Seminaire de Topologie de Strasbourg, December 1957. 
  72. [Th] A. Thorup, Parameter spaces for quadrics, in this volume. 
  73. [Tu] L. Tu, Degeneracy loci, Proceedings of the International Conference on Algebraic Geometry (Berlin 1985), Teubner Verlag, Leipzig, 1986, 296-305. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.