Enumerative geometry of degeneracy loci

Piotr Pragacz

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 3, page 413-454
  • ISSN: 0012-9593

How to cite

top

Pragacz, Piotr. "Enumerative geometry of degeneracy loci." Annales scientifiques de l'École Normale Supérieure 21.3 (1988): 413-454. <http://eudml.org/doc/82232>.

@article{Pragacz1988,
author = {Pragacz, Piotr},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {degeneracy locus; Chern classes; Thom-Porteous polynomials; Chern numbers},
language = {eng},
number = {3},
pages = {413-454},
publisher = {Elsevier},
title = {Enumerative geometry of degeneracy loci},
url = {http://eudml.org/doc/82232},
volume = {21},
year = {1988},
}

TY - JOUR
AU - Pragacz, Piotr
TI - Enumerative geometry of degeneracy loci
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 3
SP - 413
EP - 454
LA - eng
KW - degeneracy locus; Chern classes; Thom-Porteous polynomials; Chern numbers
UR - http://eudml.org/doc/82232
ER -

References

top
  1. [B-R] A. BERELE, A. REGEV, Hook Young Diagrams With Applications to Combinatorics and to Representation Theory of Lie Superalgebras (Adv. in Math., Vol. 64, pp. 118-175, 1987). Zbl0617.17002MR88i:20006
  2. [B-H] B. BOE, H. HILLER, Pieri Formula for SO2n + 1/Un and Spn/Un (Adv. in Math., Vol. 62, pp. 49-68, 1986). Zbl0611.14036MR87k:14058
  3. [F] W. FULTON, Intersection Theory, Springer Verlag, 1984. Zbl0541.14005MR85k:14004
  4. [G-G] M. GOLUBITSKY, V. GUILLEMIN, Stable Mappings and their Singularities (Graduate Texts in Math., Vol. 14, Springer-Verlag, 1973). Zbl0294.58004MR49 #6269
  5. [H-T] J. HARRIS, L. TU, Chern Numbers of Kernel and Cokernel Bundles (Invent. Math., Vol. 75, pp. 467-475, 1984). Zbl0542.14015MR86j:14025
  6. [H] F. HIRZEBRUCH, Topological Methods in Algebraic Geometry (Grundlehren der Math., Wissenschaften, Vol. 131, 1956, Third Enlarged, Springer-Verlag, 1966). Zbl0376.14001MR34 #2573
  7. [J-L-P] T. JOZEFIAK, A. LASCOUX, P. PRAGACZ, Classes of Determinantal Varieties Associated with Symmetric and Antisymmetric Matrices (Izwiestja A.N. S.S.S.R., Vol. 45, N° 9, pp. 662-673, 1981). Zbl0471.14028MR83h:14044
  8. [K-L] G. KEMPF, D. LAKSOV, The Determinantal Formula of Schubert Calculus (Acta Math., Vol. 132, pp. 153-162, 1974). Zbl0295.14023MR49 #2773
  9. [L-L-T] D. LAKSOV, A. LASCOUX, A. THORUP, On Giambelli's Theorem on Complete Correlations, to Appear in Acta Mathematica. Zbl0695.14023
  10. [L] A. LASCOUX, Puissances extérieures, déterminants et cycles de Schubert (Bull. Soc. Math., France, Vol. 102, pp. 161-179, 1974). Zbl0295.14024MR51 #529
  11. [L-S] A. LASCOUX, M. P. SCHÜTZENBERGER, Formulaire raisonné de fonctions symétriques, prépublication de l'Université Paris VII, 1985. 
  12. [M] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979. Zbl0487.20007MR84g:05003
  13. [Mo] A. MORRIS, A Note on the Multiplication of Hall Functions (J. London Math. Soc., Vol. 39, pp. 481-488, 1964). Zbl0125.01702MR29 #5897
  14. [Po] I. R. PORTEOUS, Simple Singularities of Maps, Proc. Liverpool Singularities Symposium I (Lecture Notes in Mathematics, Vol. 192, pp. 286-307, 1971). Zbl0221.57016MR45 #2723
  15. [P1] P. PRAGACZ, Determinantal Varieties and Symmetric Polynomials (Functional Analysis and Its Applications, Vol. 21, N° 3, pp. 89-90, 1987). Zbl0633.14029MR90h:14072a
  16. [P2] P. PRAGACZ, A Note on Elimination Theory (Proc. Kon. Ned. Akad. van Wetensh., Vol. A 90 (2) (= Indagationes Math., Vol. 49 (2)), pp. 215-221, 1987). Zbl0632.12002MR88m:12003
  17. [P3] P. PRAGACZ, Algebro-Geometric Applications of Schur S- and Q-Polynomials (in preparation in Séminaire d'Algèbre Dubreil-Malliavin 1987-1988, Springer Lecture Notes in Math.). Zbl0783.14031
  18. [S] H. SCHUBERT, Allgemaine Anzahlfunctionen für Kegelschnitte, Flöchen und Röume zweiten Grades in n Dimensionen (Math. Ann., Vol. 45, pp. 153-206, 1894). Zbl25.1038.03JFM25.1038.03
  19. [Sch] I. SCHUR, Uber die Darstellung der Symmetrischen und den Alternierenden Gruppe durch Gebrochene Lineare Substitutionen (Journal für die reine u. angew. Math., Vol. 139, pp. 155-250, 1911). Zbl42.0154.02JFM42.0154.02
  20. [St] R. P. STANLEY, Problem 4 in Problem Session, Combinatorics and Algebra (Contemporary Mathematics, A.M.S., Vol. 34, 1984). MR86i:22026
  21. [T] R. THOM, Les ensembles singuliers d'une application différentiable et leurs propriétés homologiques, Séminaire de Topologie de Strasbourg, (December 1957). 

Citations in EuDML Documents

top
  1. László Fehér, Richárd Rimányi, Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces
  2. Anders Thorup, Parameter spaces for quadrics
  3. Michel Brion, The push-forward and Todd class of flag bundles
  4. Piotr Pragacz, Jan Ratajski, Polynomials homologically supported on degeneracy loci
  5. Piotr Pragacz, Thom polynomials and Schur functions: the singularities I 2 , 2 ( - )
  6. Piotr Pragacz, Symmetric polynomials and divided differences in formulas of intersection theory

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.