Thom polynomials and Schur functions: the singularities I 2 , 2 ( - )

Piotr Pragacz[1]

  • [1] Institute of Mathematics of Polish Academy of Sciences Sniadeckich 8 00-956 Warszawa (Poland)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1487-1508
  • ISSN: 0373-0956

Abstract

top
We give the Thom polynomials for the singularities I 2 , 2 associated with maps ( , 0 ) ( + k , 0 ) with parameter k 0 . Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.

How to cite

top

Pragacz, Piotr. "Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$." Annales de l’institut Fourier 57.5 (2007): 1487-1508. <http://eudml.org/doc/10266>.

@article{Pragacz2007,
abstract = {We give the Thom polynomials for the singularities $I_\{2,2\}$ associated with maps $(\{\mathbb\{C\}\}^\{ \bullet \},0) \rightarrow (\{\mathbb\{C\}\}^\{\bullet +k\},0)$ with parameter $k\ge 0$. Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.},
affiliation = {Institute of Mathematics of Polish Academy of Sciences Sniadeckich 8 00-956 Warszawa (Poland)},
author = {Pragacz, Piotr},
journal = {Annales de l’institut Fourier},
keywords = {Thom polynomials; singularities; global singularity theory; classes of degeneracy loci; Schur functions; resultants},
language = {eng},
number = {5},
pages = {1487-1508},
publisher = {Association des Annales de l’institut Fourier},
title = {Thom polynomials and Schur functions: the singularities $I_\{2,2\}(-)$},
url = {http://eudml.org/doc/10266},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Pragacz, Piotr
TI - Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1487
EP - 1508
AB - We give the Thom polynomials for the singularities $I_{2,2}$ associated with maps $({\mathbb{C}}^{ \bullet },0) \rightarrow ({\mathbb{C}}^{\bullet +k},0)$ with parameter $k\ge 0$. Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.
LA - eng
KW - Thom polynomials; singularities; global singularity theory; classes of degeneracy loci; Schur functions; resultants
UR - http://eudml.org/doc/10266
ER -

References

top
  1. V. Arnold, V. Vasilev, V. Goryunov, O. Lyashko, Singularities. Local and global theory, Enc. Math. Sci. 6 (Dynamical Systems VI) (1993), Springer Zbl0787.58001
  2. G. Berczi, L. Feher, R. Rimanyi, Expressions for resultants coming from the global theory of singularities, Topics in algebraic and noncommutative geometry, (L.McEwan et al. eds.), Contemporary Math. 324 (2003), 63-69, Amer. Math. Soc. Zbl1052.57043MR1986113
  3. A. Berele, A. Regev, Hook Young diagrams with applications to combinatorics and to representation theory of Lie superalgebras, Adv. in Math. 64 (1987), 118-175 Zbl0617.17002MR884183
  4. J. Damon, Thom polynomials for contact singularities, (1972) 
  5. A. Du Plessis, C. T. C. Wall, The geometry of topological stability, (1995), Oxford Math. Monograph Zbl0870.57001MR1408432
  6. L. Feher, B. Komuves, On second order Thom-Boardman singularities, Fund. Math. 191 (2006), 249-264 Zbl1127.58036MR2278625
  7. L. Fehér, László M., R. Rimányi, Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and complex singularities 354 (2004), 69-93, Amer. Math. Soc. Zbl1074.32008MR2087805
  8. L. Feher, R. Rimányi, On the structure of Thom polynomials of singularities Zbl1140.32019
  9. William Fulton, Piotr Pragacz, Schubert varieties and degeneracy loci, 1689 (1998), Springer-Verlag, Berlin Zbl0913.14016MR1639468
  10. K. Jänich, Symmetry properties of singularities of C -functions, Math. Ann. 238 (1979), 147-156 Zbl0373.58002MR512820
  11. M. E. Kazarian 
  12. M. E. Kazarian, Characteristic classes of singularity theory, The Arnold-Gelfand mathematical seminars: Geometry and singularity theory (1997), 325-340 Zbl0872.57034MR1429898
  13. M. E. Kazarian, Classifying spaces of singularities and Thom polynomials, New developments in singularity theory, NATO Sci. Ser. II Math. Phys. Chem. 21 (2001), 117-134, Kluwer Acad. Publ., Dordrecht Zbl0991.58010MR1849306
  14. S. Kleiman, The enumerative theory of singularities, Real and complex singularities, Oslo 1976 (P. Holm ed.) (1978), 297-396 Zbl0385.14018MR568897
  15. D. Laksov, A. Lascoux, A. Thorup, On Giambelli’s theorem for complete correlations, Acta Math. 162 (1989), 143-199 Zbl0695.14023
  16. A. Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS/AMS Lectures Notes 99 (2003), Providence Zbl1039.05066MR2017492
  17. A. Lascoux, M.-P. Schützenberger, Formulaire raisonné de fonctions symétriques, (1985), Université Paris 7 
  18. Alain Lascoux, Addition of ± 1 : application to arithmetic, Sém. Lothar. Combin. 52 (2004/05) Zbl1166.11344MR2081105
  19. I. G. Macdonald, Symmetric functions and Hall-Littlewood polynomials, Oxford Math. Monographs (1995), Amer. Math. Soc. Zbl0824.05059
  20. O. Ozturk, On Thom polynomials for A 4 ( - ) via Schur functions Zbl1224.05499
  21. I. Porteous, Simple singularities of maps, Proc. Liverpool Singularities I, Springer Lecture Notes in Math. 192 (1971), 286-307, Springer Zbl0221.57016MR293646
  22. P. Pragacz, Thom polynomials and Schur functions I Zbl1157.58015
  23. P. Pragacz, Thom polynomials and Schur functions: the singularities A 3 ( - )  Zbl1277.05166
  24. P. Pragacz, Thom polynomials and Schur functions: towards the singularities A i ( - )  Zbl1157.58015
  25. P. Pragacz, Note on elimination theory, Indagationes Math. 49 (1987), 215-221 Zbl0632.12002MR898165
  26. P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. 21 (1988), 413-454 Zbl0687.14043MR974411
  27. P. Pragacz, Algebro-geometric applications of Schur S - and Q -polynomials, Topics in invariant theory, Séminaire d’Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin ed.), Springer Lecture Notes in Math. 1478 (1991), 130-191, Springer Zbl0783.14031
  28. P. Pragacz, Symmetric polynomials and divided differences in formulas of intersection theory, Parameter spaces (P. Pragacz ed.) 36 (1996), 125-177, Banach Center Publications Zbl0851.05094MR1481485
  29. P. Pragacz, A. Thorup, On a Jacobi-Trudi identity for supersymmetric polynomials, Adv. in Math. 95 (1992), 8-17 Zbl0774.05101MR1176151
  30. P. Pragacz, A. Weber, Positivity of Schur function expansions of Thom polynomials Zbl1146.05049
  31. R. Rimanyi, Thom polynomials, symmetries and incidences of singularities, Inv. Math. 143 (2001), 499-521 Zbl0985.32012MR1817643
  32. R. Rimanyi, A. Szücs, Generalized Pontrjagin-Thom construction for maps with singularities, Topology 37 (1998), 1177-1191 Zbl0924.57035MR1632908
  33. H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in n Dimensionen, Math. Ann. 45 (1894), 153-206 Zbl25.1038.03MR1510859
  34. J. Stembridge, A characterization of supersymmetric polynomials, J. Algebra 95 (1985), 439-444 Zbl0573.17004MR801279
  35. R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier 6 (1955–56), 43-87 Zbl0075.32104MR87149
  36. C. T. C. Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 347-354 Zbl0424.58006MR587705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.