Thom polynomials and Schur functions: the singularities
- [1] Institute of Mathematics of Polish Academy of Sciences Sniadeckich 8 00-956 Warszawa (Poland)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1487-1508
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPragacz, Piotr. "Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$." Annales de l’institut Fourier 57.5 (2007): 1487-1508. <http://eudml.org/doc/10266>.
@article{Pragacz2007,
abstract = {We give the Thom polynomials for the singularities $I_\{2,2\}$ associated with maps $(\{\mathbb\{C\}\}^\{ \bullet \},0) \rightarrow (\{\mathbb\{C\}\}^\{\bullet +k\},0)$ with parameter $k\ge 0$. Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.},
affiliation = {Institute of Mathematics of Polish Academy of Sciences Sniadeckich 8 00-956 Warszawa (Poland)},
author = {Pragacz, Piotr},
journal = {Annales de l’institut Fourier},
keywords = {Thom polynomials; singularities; global singularity theory; classes of degeneracy loci; Schur functions; resultants},
language = {eng},
number = {5},
pages = {1487-1508},
publisher = {Association des Annales de l’institut Fourier},
title = {Thom polynomials and Schur functions: the singularities $I_\{2,2\}(-)$},
url = {http://eudml.org/doc/10266},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Pragacz, Piotr
TI - Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1487
EP - 1508
AB - We give the Thom polynomials for the singularities $I_{2,2}$ associated with maps $({\mathbb{C}}^{ \bullet },0) \rightarrow ({\mathbb{C}}^{\bullet +k},0)$ with parameter $k\ge 0$. Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.
LA - eng
KW - Thom polynomials; singularities; global singularity theory; classes of degeneracy loci; Schur functions; resultants
UR - http://eudml.org/doc/10266
ER -
References
top- V. Arnold, V. Vasilev, V. Goryunov, O. Lyashko, Singularities. Local and global theory, Enc. Math. Sci. 6 (Dynamical Systems VI) (1993), Springer Zbl0787.58001
- G. Berczi, L. Feher, R. Rimanyi, Expressions for resultants coming from the global theory of singularities, Topics in algebraic and noncommutative geometry, (L.McEwan et al. eds.), Contemporary Math. 324 (2003), 63-69, Amer. Math. Soc. Zbl1052.57043MR1986113
- A. Berele, A. Regev, Hook Young diagrams with applications to combinatorics and to representation theory of Lie superalgebras, Adv. in Math. 64 (1987), 118-175 Zbl0617.17002MR884183
- J. Damon, Thom polynomials for contact singularities, (1972)
- A. Du Plessis, C. T. C. Wall, The geometry of topological stability, (1995), Oxford Math. Monograph Zbl0870.57001MR1408432
- L. Feher, B. Komuves, On second order Thom-Boardman singularities, Fund. Math. 191 (2006), 249-264 Zbl1127.58036MR2278625
- L. Fehér, László M., R. Rimányi, Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and complex singularities 354 (2004), 69-93, Amer. Math. Soc. Zbl1074.32008MR2087805
- L. Feher, R. Rimányi, On the structure of Thom polynomials of singularities Zbl1140.32019
- William Fulton, Piotr Pragacz, Schubert varieties and degeneracy loci, 1689 (1998), Springer-Verlag, Berlin Zbl0913.14016MR1639468
- K. Jänich, Symmetry properties of singularities of -functions, Math. Ann. 238 (1979), 147-156 Zbl0373.58002MR512820
- M. E. Kazarian
- M. E. Kazarian, Characteristic classes of singularity theory, The Arnold-Gelfand mathematical seminars: Geometry and singularity theory (1997), 325-340 Zbl0872.57034MR1429898
- M. E. Kazarian, Classifying spaces of singularities and Thom polynomials, New developments in singularity theory, NATO Sci. Ser. II Math. Phys. Chem. 21 (2001), 117-134, Kluwer Acad. Publ., Dordrecht Zbl0991.58010MR1849306
- S. Kleiman, The enumerative theory of singularities, Real and complex singularities, Oslo 1976 (P. Holm ed.) (1978), 297-396 Zbl0385.14018MR568897
- D. Laksov, A. Lascoux, A. Thorup, On Giambelli’s theorem for complete correlations, Acta Math. 162 (1989), 143-199 Zbl0695.14023
- A. Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS/AMS Lectures Notes 99 (2003), Providence Zbl1039.05066MR2017492
- A. Lascoux, M.-P. Schützenberger, Formulaire raisonné de fonctions symétriques, (1985), Université Paris 7
- Alain Lascoux, Addition of : application to arithmetic, Sém. Lothar. Combin. 52 (2004/05) Zbl1166.11344MR2081105
- I. G. Macdonald, Symmetric functions and Hall-Littlewood polynomials, Oxford Math. Monographs (1995), Amer. Math. Soc. Zbl0824.05059
- O. Ozturk, On Thom polynomials for via Schur functions Zbl1224.05499
- I. Porteous, Simple singularities of maps, Proc. Liverpool Singularities I, Springer Lecture Notes in Math. 192 (1971), 286-307, Springer Zbl0221.57016MR293646
- P. Pragacz, Thom polynomials and Schur functions I Zbl1157.58015
- P. Pragacz, Thom polynomials and Schur functions: the singularities Zbl1277.05166
- P. Pragacz, Thom polynomials and Schur functions: towards the singularities Zbl1157.58015
- P. Pragacz, Note on elimination theory, Indagationes Math. 49 (1987), 215-221 Zbl0632.12002MR898165
- P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. 21 (1988), 413-454 Zbl0687.14043MR974411
- P. Pragacz, Algebro-geometric applications of Schur - and -polynomials, Topics in invariant theory, Séminaire d’Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin ed.), Springer Lecture Notes in Math. 1478 (1991), 130-191, Springer Zbl0783.14031
- P. Pragacz, Symmetric polynomials and divided differences in formulas of intersection theory, Parameter spaces (P. Pragacz ed.) 36 (1996), 125-177, Banach Center Publications Zbl0851.05094MR1481485
- P. Pragacz, A. Thorup, On a Jacobi-Trudi identity for supersymmetric polynomials, Adv. in Math. 95 (1992), 8-17 Zbl0774.05101MR1176151
- P. Pragacz, A. Weber, Positivity of Schur function expansions of Thom polynomials Zbl1146.05049
- R. Rimanyi, Thom polynomials, symmetries and incidences of singularities, Inv. Math. 143 (2001), 499-521 Zbl0985.32012MR1817643
- R. Rimanyi, A. Szücs, Generalized Pontrjagin-Thom construction for maps with singularities, Topology 37 (1998), 1177-1191 Zbl0924.57035MR1632908
- H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in Dimensionen, Math. Ann. 45 (1894), 153-206 Zbl25.1038.03MR1510859
- J. Stembridge, A characterization of supersymmetric polynomials, J. Algebra 95 (1985), 439-444 Zbl0573.17004MR801279
- R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier 6 (1955–56), 43-87 Zbl0075.32104MR87149
- C. T. C. Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), 347-354 Zbl0424.58006MR587705
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.